Skip to main content
Log in

Dimension Spectra of Hyperbolic Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For flows with a conformal hyperbolic set, we establish a conditional variational principle for the dimension spectra of Hölder continuous functions. We consider simultaneously Birkhoff averages into the future and into the past. We emphasize that the description of the spectra is not a consequence of the existing results for Birkhoff averages into the future (or into the past). The main difficulty is that even though the local product structure is bi-Lipschitz, the level sets of the Birkhoff averages are never compact. Our proof is based on the use of Markov systems and is inspired in earlier arguments in the case of discrete time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barreira, L.: Dimension and Recurrence in Hyperbolic Dynamics. Progress in Mathematics, vol. 272. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  2. Barreira, L., Doutor, P.: Birkhoff averages for hyperbolic flows: variational principles and applications. J. Stat. Phys. 115, 1567–1603 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Barreira, L., Iommi, G.: Suspension flows over countable Markov shifts. J. Stat. Phys. 124, 207–230 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Barreira, L., Pesin, Ya., Schmeling, J.: On a general concept of multifractality. Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7, 27–38 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Barreira, L., Pesin, Ya., Schmeling, J.: Multifractal spectra and multifractal rigidity for horseshoes. J. Dyn. Control Syst. 3, 33–49 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barreira, L., Saraiva, V.: Multifractal nonrigidity of topological Markov chains. J. Stat. Phys. 130, 387–412 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Barreira, L., Saussol, B.: Multifractal analysis of hyperbolic flows. Commun. Math. Phys. 214, 339–371 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Barreira, L., Schmeling, J.: Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Isr. J. Math. 116, 29–70 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barreira, L., Valls, C.: Multifractal structure of two-dimensional horseshoes. Commun. Math. Phys. 266, 455–470 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429–460 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphism. Lect. Notes in Math., vol. 470. Springer, Berlin (1975)

    Google Scholar 

  12. Collet, P., Lebowitz, J., Porzio, A.: The dimension spectrum of some dynamical systems. J. Stat. Phys. 47, 609–644 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Fiala, J., Kleban, P., Özlük, A.: The phase transition in statistical models defined on Farey fractions. J. Stat. Phys. 110, 73–86 (2003)

    Article  MATH  Google Scholar 

  14. Fisch, R.: Aspect-ratio scaling of domain wall entropy for the 2D ±J Ising spin glass. J. Stat. Phys. 130, 561–569 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Frisch, U., Khanin, K., Matsumoto, T.: Multifractality of the Feigenbaum attractor and fractional derivatives. J. Stat. Phys. 121, 671–695 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Frisch, U., Matsumoto, T.: On multifractality and fractional derivatives. J. Stat. Phys. 108, 1181–1202 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gurevič, B.: Topological entropy of a countable Markov chain. Sov. Math. Dokl. 10, 911–915 (1969)

    Google Scholar 

  18. Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A (3) 34, 1141–1151 (1986). Errata in 34, 1601 (1986)

    Article  ADS  Google Scholar 

  19. Hanus, P., Mauldin, R., Urbański, M.: Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems. Acta Math. Hung. 96, 27–98 (2002)

    Article  MATH  Google Scholar 

  20. Hasselblatt, B.: Regularity of the Anosov splitting and of horospheric foliations. Ergod. Theory Dyn. Syst. 14, 645–666 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Iommi, G.: Multifractal analysis for countable Markov shifts. Ergod. Theory Dyn. Syst. 25, 1881–1907 (2005)

    Article  MathSciNet  Google Scholar 

  22. Iommi, G., Skorulski, B.: Multifractal analysis for the exponential family. Discrete Contin. Dyn. Syst. 16, 857–869 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jaffard, S.: Multifractal formalism for functions. I. Results valid for all functions. SIAM J. Math. Anal. 28, 944–970 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jaffard, S.: Multifractal formalism for functions. II. Self-similar functions. SIAM J. Math. Anal. 28, 971–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jaffard, S., Mélot, C.: Wavelet analysis of fractal boundaries. I. Local exponents. Commun. Math. Phys. 258, 513–539 (2005)

    Article  MATH  ADS  Google Scholar 

  26. Jaffard, S., Mélot, C.: Wavelet analysis of fractal boundaries. II. Multifractal analysis. Commun. Math. Phys. 258, 541–565 (2005)

    Article  MATH  ADS  Google Scholar 

  27. Kesseböhmer, M., Stratmann, B.: A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups. Ergod. Theory Dyn. Syst. 24, 141–170 (2004)

    Article  MATH  Google Scholar 

  28. Kesseböhmer, M., Stratmann, B.: A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates. J. Reine Angew. Math. 605, 133–163 (2007)

    MATH  MathSciNet  Google Scholar 

  29. Kleban, P., Özlük, A.: A Farey fraction spin chain. Commun. Math. Phys. 203, 635–647 (1999)

    Article  MATH  ADS  Google Scholar 

  30. Lopes, A.: The dimension spectrum of the maximal measure. SIAM J. Math. Anal. 20, 1243–1254 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mauldin, R., Urbański, M.: Dimensions and measures in infinite iterated function systems. Proc. Lond. Math. Soc. (3) 73, 105–154 (1996)

    Article  MATH  Google Scholar 

  32. Mauldin, R., Urbański, M.: Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Am. Math. Soc. 351, 4995–5025 (1999)

    Article  MATH  Google Scholar 

  33. Mauldin, R., Urbański, M.: Parabolic iterated function systems. Ergod. Theory Dyn. Syst. 20, 1423–1447 (2000)

    Article  MATH  Google Scholar 

  34. Nakaishi, K.: Multifractal formalism for some parabolic maps. Ergod. Theory Dyn. Syst. 20, 843–857 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pesin, Ya.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. Chicago University Press, Chicago (1997)

    Google Scholar 

  36. Pesin, Ya., Sadovskaya, V.: Multifractal analysis of conformal Axiom A flows. Commun. Math. Phys. 216, 277–312 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Piacquadio, M., Rosen, M.: Multifractal spectrum of an experimental (video feedback) Farey tree. J. Stat. Phys. 127, 783–804 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Pollicott, M., Weiss, H.: Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Commun. Math. Phys. 207, 145–171 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Rand, D.: The singularity spectrum f(α) for cookie-cutters. Ergod. Theory Dyn. Syst. 9, 527–541 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ratner, M.: Markov partitions for Anosov flows on n-dimensional manifolds. Isr. J. Math. 15, 92–114 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ruelle, D.: Statistical mechanics on a compact set with ℤν action satisfying expansiveness and specification. Trans. Am. Math. Soc. 185, 237–251 (1973)

    Article  MathSciNet  Google Scholar 

  42. Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Mathematics and Its Applications, vol. 5. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  43. Sarig, O.: Thermodynamic formalism for countable Markov shifts. Ergod. Theory Dyn. Syst. 19, 1565–1593 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Savchenko, S.: Special flows constructed from countable topological Markov chains. Funct. Anal. Appl. 32, 32–41 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. Urbański, M., Zdunik, A.: The finer geometry and dynamics of the hyperbolic exponential family. Mich. Math. J. 51, 227–250 (2003)

    Article  MATH  Google Scholar 

  46. Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. Math. 97, 937–971 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  47. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1982)

    MATH  Google Scholar 

  48. Yuri, M.: Multifractal analysis of weak Gibbs measures for intermittent systems. Commun. Math. Phys. 230, 365–388 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Additional information

L. Barreira was partially supported by FCT through CAMGSD, Lisbon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreira, L., Doutor, P. Dimension Spectra of Hyperbolic Flows. J Stat Phys 136, 505–525 (2009). https://doi.org/10.1007/s10955-009-9790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9790-5

Keywords

Navigation