Skip to main content
Log in

The Phase Transition of the Quantum Ising Model is Sharp

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An analysis is presented of the phase transition of the quantum Ising model with transverse field on the d-dimensional hypercubic lattice. It is shown that there is a unique sharp transition. The value of the critical point is calculated rigorously in one dimension. The first step is to express the quantum Ising model in terms of a (continuous) classical Ising model in d+1 dimensions. A so-called ‘random-parity’ representation is developed for the latter model, similar to the random-current representation for the classical Ising model on a discrete lattice. Certain differential inequalities are proved. Integration of these inequalities yields the sharpness of the phase transition, and also a number of other facts concerning the critical and near-critical behaviour of the model under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M.: Geometric analysis of φ 4 fields and Ising models. Commun. Math. Phys. 86, 1–48 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Aizenman, M., Fernández, R.: On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys. 44, 393–454 (1986)

    Article  MATH  ADS  Google Scholar 

  4. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489–526 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin states. Commun. Math. Phys. 164, 17–63 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Aizenman, M., Jung, P.: On the critical behavior at the lower phase transition of the contact process. Alea, Lat. Am. J. Probab. Math. Stat. 3, 301–320 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47, 343–374 (1987)

    Article  ADS  Google Scholar 

  8. Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: Discontinuity of the magnetization in one-dimensional 1/|xy|2 Ising and Potts models. J. Stat. Phys. 50, 1–40 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Aizenman, M., Klein, A., Newman, C.M.: Percolation methods for disordered quantum Ising models. In: Kotecký, R. (ed.) Phase Transitions: Mathematics, Physics, Biology. World Scientific, Singapore (1992)

    Google Scholar 

  10. Bezuidenhout, C.E., Grimmett, G.R.: Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19, 984–1009 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Björnberg, J.E.: Critical value of the quantum Ising model on star-like graphs. J. Stat. Phys. 135, 571–583 (2009)

    Article  ADS  Google Scholar 

  12. Björnberg, J.E.: Graphical representations of Ising and Potts models. Ph.D. Thesis (2009)

  13. Bodineau, T.: Translation invariant Gibbs states for the Ising model. Probab. Theory Relat. Fields 135, 153–168 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121, 501–505 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Campanino, M., Klein, A., Perez, J.F.: Localization in the ground state of the Ising model with a random transverse field. Commun. Math. Phys. 135, 499–515 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Chayes, L., Crawford, N., Ioffe, D., Levit, A.: The phase diagram of the quantum Curie–Weiss model. J. Stat. Phys. 133, 131–149 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Crawford, N., Ioffe, D.: Random current representation for transverse field Ising model (2008). arXiv:0812.4834

  18. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der Mathematischen Wissenschaften, vol. 271. Springer, Berlin (1985)

    MATH  Google Scholar 

  19. Ethier, S., Kurtz, T.: Markov Processes, 2nd edn. Wiley, New York (2009)

    Google Scholar 

  20. Gielis, G., Grimmett, G.R.: Rigidity of the interface in percolation and random-cluster models. J. Stat. Phys. 109, 1–37 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Griffiths, R.B., Hurst, C.A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11, 790–795 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  22. Grimmett, G.R.: Percolation, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 321. Springer, Berlin (1999)

    MATH  Google Scholar 

  23. Grimmett, G.R.: The Random-Cluster Model. Grundlehren der Mathematischen Wissenschaften, vol. 333. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  24. Grimmett, G.R.: Probability on Graphs (2008). http://www.statslab.cam.ac.uk/~grg/books/pgs.html

  25. Grimmett, G.R.: Space–time percolation. In: Sidoravicius, V., Vares, M.E. (eds.) In and Out of Equilibrium 2. Progress in Probability, vol. 333, pp. 305–320. Birkhäuser, Boston (2008)

    Chapter  Google Scholar 

  26. Grimmett, G.R.: Correlation inequalities of GKS type for the Potts model (2009). arXiv:0901.1625

  27. Grimmett, G.R., Osborne, T.J., Scudo, P.F.: Entanglement in the quantum Ising model. J. Stat. Phys. 131, 305–339 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Ioffe, D.: Stochastic geometry of classical and quantum Ising models. In: Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics, vol. 1970, pp. 87–126. Springer, Berlin (2009)

  29. Lebowitz, J.L.: GHS and other inequalities. Commun. Math. Phys. 35, 87–92 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lebowitz, J.L., Martin-Löf, A.: On the uniqueness of the equilibrium state for Ising spin systems. Commun. Math. Phys. 25, 276–282 (1972)

    Article  ADS  Google Scholar 

  31. Lieb, E.: A refinement of Simon’s correlation inequality. Commun. Math. Phys. 77, 127–135 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  32. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Nachtergaele, B.: A stochastic-geometric approach to quantum spin systems. In: Grimmett, G.R. (ed.) Probability and Phase Transition, pp. 237–246. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  34. Preston, C.: An application of the GHS inequalities to show the absence of phase transition for Ising spin systems. Commun. Math. Phys. 35, 253–255 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  35. Simon, B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math. Phys. 77, 111–126 (1980)

    Article  ADS  Google Scholar 

  36. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2009). arXiv:0708.0039

  37. Werner, W.: Percolation et Modèle d’Ising (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Grimmett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björnberg, J.E., Grimmett, G.R. The Phase Transition of the Quantum Ising Model is Sharp. J Stat Phys 136, 231–273 (2009). https://doi.org/10.1007/s10955-009-9788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9788-z

Keywords

Navigation