Skip to main content
Log in

Condensation of the Roots of Real Random Polynomials on the Real Axis

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a family of real random polynomials of degree n whose coefficients a k are symmetric independent Gaussian variables with variance \(\langle a_{k}^{2}\rangle=e^{-k^{\alpha}}\) , indexed by a real α≥0. We compute exactly the mean number of real roots 〈N n 〉 for large n. As α is varied, one finds three different phases. First, for 0≤α<1, one finds that \(\langle N_{n}\rangle \sim (\frac{2}{\pi})\log{n}\) . For 1<α<2, there is an intermediate phase where 〈N n 〉 grows algebraically with a continuously varying exponent, \(\langle N_{n}\rangle \sim \frac{2}{\pi}\sqrt{\frac{\alpha-1}{\alpha}}\,n^{\alpha/2}\) . And finally for α>2, one finds a third phase where 〈N n 〉∼n. This family of real random polynomials thus exhibits a condensation of their roots on the real line in the sense that, for large n, a finite fraction of their roots 〈N n 〉/n are real. This condensation occurs via a localization of the real roots around the values \(\pm \exp [\frac{\alpha}{2}(k+\frac{1}{2})^{\alpha-1}]\) , 1≪kn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloch, A., Pólya, G.: On the roots of certain algebraic equations. Proc. Lond. Math. Soc. (3) 33, 102 (1932)

    Article  Google Scholar 

  2. Bharucha-Reid, A.T., Sambandham, M.: Random Polynomials. Academic Press, San Diego (1986)

    MATH  Google Scholar 

  3. Farahmand, K.: In: Topics in Random Polynomials. Pitman Research Notes in Mathematics Series, vol. 393. Longman, Harlow (1998)

    Google Scholar 

  4. Edelman, A., Kostlan, E.: How many zeros of random polynomials are real? Bull. Am. Math. Soc. 32, 1 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bogomolny, E., Bohigas, O., Leboeuf, P.: Distribution of roots of random polynomials. Phys. Rev. Lett. 68, 2726 (1992). Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85, 639 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Schehr, G., Majumdar, S.N.: Statistics of the number of zero crossings: from random polynomials to the diffusion equation. Phys. Rev. Lett. 99, 060603 (2007)

    Article  ADS  Google Scholar 

  7. Schehr, G., Majumdar, S.N.: J. Stat. Phys. 132, 235 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Kac, M.: On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49, 314 (1943). Erratum: Bull. Am. Math. Soc. 49, 938 (1943)

    Article  MATH  Google Scholar 

  9. Das, M.: Real zeros of a class of random algebraic polynomials. J. Indian Math. Soc. 36, 53 (1972)

    MATH  MathSciNet  Google Scholar 

  10. Leboeuf, P.: Random analytic chaotic eigenstates. J. Stat. Phys. 95, 651 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. II. Proc. Cambr. Philos. Soc. 35, 133 (1939)

    Article  MATH  Google Scholar 

  12. Aldous, A.P., Fyodorov, Y.V.: Real roots of random polynomials: universality close to accumulation points. J. Phys. A: Math. Gen. 37, 1231 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Schehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schehr, G., Majumdar, S.N. Condensation of the Roots of Real Random Polynomials on the Real Axis. J Stat Phys 135, 587–598 (2009). https://doi.org/10.1007/s10955-009-9755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9755-8

Keywords

Navigation