Skip to main content
Log in

On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the structure of the nonequilibrium stationary state (NESS) of a system of first and second class particles, as well as vacancies (holes), on L sites of a one-dimensional lattice in contact with first class particle reservoirs at the boundary sites; these particles can enter at site 1, when it is vacant, with rate α, and exit from site L with rate β. Second class particles can neither enter nor leave the system, so the boundaries are semi-permeable. The internal dynamics are described by the usual totally asymmetric exclusion process (TASEP) with second class particles. An exact solution of the NESS was found by Arita. Here we describe two consequences of the fact that the flux of second class particles is zero. First, there exist (pinned and unpinned) fat shocks which determine the general structure of the phase diagram and of the local measures; the latter describe the microscopic structure of the system at different macroscopic points (in the limit L→∞) in terms of superpositions of extremal measures of the infinite system. Second, the distribution of second class particles is given by an equilibrium ensemble in fixed volume, or equivalently but more simply by a pressure ensemble, in which the pair potential between neighboring particles grows logarithmically with distance. We also point out an unexpected feature in the microscopic structure of the NESS for finite L: if there are n second class particles in the system then the distribution of first class particles (respectively holes) on the first (respectively last) n sites is exchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arita, C.: Exact analysis of two-species totally asymmetric exclusion process with open boundary conditions. J. Phys. Soc. Jpn. 75, 065003 (2006)

    Article  ADS  Google Scholar 

  2. Arita, C.: Phase transitions in the two-species totally asymmetric exclusion process with open boundaries. J. Stat. Mech. P12008 (2006)

  3. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andjel, E.D., Bramson, M., Liggett, T.M.: Shocks in the asymmetric exclusion process. Probab. Theory Relat. Fields 78, 231–247 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    MATH  Google Scholar 

  6. Derrida, B., Domany, E., Mukamel, D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69, 667–687 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8.  Schütz, G., Domany, E.: Phase transitions in an exactly soluble one-dimensional asymmetric exclusion model. J. Stat. Phys. 72, 277–296 (1993)

    Article  MATH  ADS  Google Scholar 

  9. Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys. 73, 813–842 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    MATH  Google Scholar 

  11. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London (2000)

    Google Scholar 

  12. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A: Math. Theory 40, R333–R441 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Uchiyama, M.: Two-species asymmetric simple exclusion process with open boundaries. Chaos Solitons Fractals 35, 398–407 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Evans, M.R., Foster, D.P., Godréche, C., Mukamel, D.: Asymmetric exclusion model with two species: Spontaneous symmetry breaking. J. Stat. Phys. 80, 69–102 (1995)

    Article  MATH  ADS  Google Scholar 

  15. Krebs, K., Jafarpour, F.H., Schütz, G.M.: Microscopic structure of travelling wave solutions in a class of stochastic interacting particle systems. New J. Phys. 5, 145.1–145.14 (2003)

    Article  Google Scholar 

  16. Speer, E.R.: The two species totally asymmetric exclusion process. In: Fannes, M., Maes, C., Verbeure, A. (eds.) On Three Levels: The Micro-, Meso-, and Macroscopic Approaches in Physics. NATO ASI Series B: Physics, vol. 324, pp. 91–112. Plenum, New York (1994)

    Google Scholar 

  17. Ferrari, P.A., Fontes, L.R.G., Kohayakawa, Y.: Invariant measures for a two-species asymmetric process. J. Stat. Phys. 76, 1153–1177 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Derrida, B., Lebowitz, J.L., Speer, E.R.: Shock profiles for the asymmetric simple exclusion process in one dimension. J. Stat. Phys. 89, 135–167 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Rakos, A., Paessens, M., Schütz, G.M.: Hysteresis in one-dimensional reaction-diffusion systems. Phys. Rev. Lett. 91, 238302 (2003)

    Article  ADS  Google Scholar 

  20. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. 0807.4457

  21. Feller, W.: An Introduction to Probability Theory and its Applications II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  22. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, A009766. http://www.research.att.com/~njas/sequences/A009766

  23. Hill, T.L.: Statistical Mechanics: Principles and Selected Applications. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  24. Percus, J.K.: Exactly solvable models of classical many-body systems. In: Lebowitz, J.L. (ed.) Simple Models of Equilibrium and Nonequilibrium Phenomena. North-Holland, Amsterdam (1987)

    Google Scholar 

  25. Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4, 216–228 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  26. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math Gen. 38, R195–R240 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. P07014 (2007)

  28. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Prob. 35, 807–832 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Katz, S., Lebowitz, J.L., Spohn, H.: Non-equilibrium steady states of stochastic lattice gas models of fast ionic conductors. J. Stat. Phys. 34, 497–537 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  30. Derrida, B., Lebowitz, J.L., Speer, E.R.: Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process. J. Stat. Phys. 110, 775–810 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Derrida, B.: Systems out of equilibrium: some exactly soluble models. In: Hao, B. (ed.) Statphys 19, the 19th IUPAP International Conference on Statistical Physics, Xiamen, China, July 31–August 4, 1995. World Scientific, Singapore (1996)

    Google Scholar 

  32. Mallick, K.: Shocks in the asymmetric exclusion model with an impurity. J. Phys. A. 29, 5375–5386 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Derrida, B., Evans, M.R.: Bethe ansatz solution for a defect particle in the asymmetric exclusion model. J. Phys. A 32, 4833–4850 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Ayyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayyer, A., Lebowitz, J.L. & Speer, E.R. On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries. J Stat Phys 135, 1009–1037 (2009). https://doi.org/10.1007/s10955-009-9724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9724-2

Keywords

Navigation