Skip to main content
Log in

ThermoElectric Transport Properties of a Chain of Quantum Dots with Self-Consistent Reservoirs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a model for charge and heat transport based on the Landauer-Büttiker scattering approach. The system consists of a chain of N quantum dots, each of them being coupled to a particle reservoir. Additionally, the left and right ends of the chain are coupled to two particle reservoirs. All these reservoirs are independent and can be described by any of the standard physical distributions: Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein. In the linear response regime, and under some assumptions, we first describe the general transport properties of the system. Then we impose the self-consistency condition, i.e. we fix the boundary values (T L,μ L) and (T R,μ R), and adjust the parameters (T i ,μ i ), for i=1,…,N, so that the net average electric and heat currents into all the intermediate reservoirs vanish. This condition leads to expressions for the temperature and chemical potential profiles along the system, which turn out to be independent of the distribution describing the reservoirs. We also determine the average electric and heat currents flowing through the system and present some numerical results, using random matrix theory, showing that these currents are typically governed by Ohm and Fourier laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackson, E.A.: Nonlinearity and irreversibility in lattice dynamics. Rocky Mt. J. Math. 8, 127–196 (1978)

    Article  Google Scholar 

  2. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics 2000, pp. 128–150. Imp. Coll. Press, London (2000)

    Google Scholar 

  3. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Lorentz, H.A.: Le mouvement des électrons dans les métaux. Arch. Neerl. 10, 336–371 (1905)

    Google Scholar 

  5. Lebowitz, J.L., Spohn, H.: Transport properties of the Lorentz gas: Fourier’s law. J. Stat. Phys. 19(6), 633–654 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lebowitz, J.L., Spohn, H.: Microscopic basis for Fick’s law for self-diffusion. J. Stat. Phys. 28(3), 539–556 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Wagner, C., Klages, R., Nicolis, G.: Thermostating by deterministic scattering: Heat and shear flow. Phys. Rev. E 60(2), 1401–1411 (1999)

    Article  ADS  Google Scholar 

  8. Klages, R., Rateitschak, K., Nicolis, G.: Thermostating by deterministic scattering: Construction of nonequilibrium steady states. Phys. Rev. Lett. 84(19), 4268–4271 (2000)

    Article  ADS  Google Scholar 

  9. Rateitschak, K., Klages, R., Nicolis, G.: Thermostating by deterministic scattering: the periodic Lorentz gas. J. Stat. Phys. 99(5–6), 1339–1364 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mejía-Monasterio, C., Larralde, H., Leyvraz, F.: Coupled normal heat and matter transport in a simple model system. Phys. Rev. Lett. 86(24), 5417–5420 (2001)

    Article  ADS  Google Scholar 

  11. Larralde, H., Leyvraz, F., Mejía-Monasterio, C.: Transport properties of a modified Lorentz gas. J. Stat. Phys. 113(1–2), 197–231 (2003)

    Article  MATH  Google Scholar 

  12. Eckmann, J.-P., Young, L.-S.: Nonequilibrium energy profiles for a class of 1-D models. Commun. Math. Phys. 262(1), 237–267 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 1, 223–231 (1957)

    MathSciNet  Google Scholar 

  14. Landauer, R.: Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21(172), 863–867 (1970)

    Article  ADS  Google Scholar 

  15. Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57(14), 1761–1764 (1986)

    Article  ADS  Google Scholar 

  16. Büttiker, M.: Scattering theory of thermal and excess noise in open conductors. Phys. Rev. Lett. 65(23), 2901–2904 (1990)

    Article  ADS  Google Scholar 

  17. Büttiker, M.: Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys. Rev. B 46(19), 12485–12507 (1992)

    Article  ADS  Google Scholar 

  18. Bolsterli, M., Rich, M., Visscher, W.M.: Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs. Phys. Rev. A 1(4), 1086–1088 (1970)

    Article  ADS  Google Scholar 

  19. Rich, M., Visscher, W.M.: Disordered harmonic chain with self-consistent reservoirs. Phys. Rev. B 11(6), 2164–2170 (1975)

    Article  ADS  Google Scholar 

  20. Visscher, W.M., Rich, M.: Stationary nonequilibrium properties of a quantum-mechanical lattice with self-consistent reservoirs. Phys. Rev. A 12(2), 675–680 (1975)

    Article  ADS  Google Scholar 

  21. Davies, E.B.: A model of heat conduction. J. Stat. Phys. 18(2), 161–170 (1978)

    Article  ADS  Google Scholar 

  22. Bonetto, F., Lebowitz, J.L., Lukkarinen, J.: Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116(1–4), 783–813 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Roy, D., Dhar, A.: Electron transport in a one dimensional conductor with inelastic scattering by self-consistent reservoirs. Phys. Rev. B 75(19), 195110(9) (2007)

    Article  ADS  Google Scholar 

  24. Büttiker, M.: Small normal-metal loop coupled to an electron reservoir. Phys. Rev. B 32(3), 1846–1849 (1985)

    Article  ADS  Google Scholar 

  25. Büttiker, M.: Role of quantum coherence in series resistors. Phys. Rev. B 33(5), 3020–3026 (1986)

    Article  ADS  Google Scholar 

  26. Büttiker, M.: Coherent and sequential tunneling in series barriers. IBM J. Res. Develop. 32(1), 63–75 (1988)

    Google Scholar 

  27. D’Amato, J.L., Pastawski, H.M.: Conductance of a disordered linear chain including inelastic scattering events. Phys. Rev. B 41(11), 7411–7420 (1990)

    Article  ADS  Google Scholar 

  28. Büttiker, M.: Quantum coherence and phase randomization in series resistors. Resonant Tunneling in Semiconductors, pp. 213–227 (1991)

  29. Blanter, Ya.M., Büttiker, M.: Shot noise in mesoscopic conductors. Phys. Rep. 336(1–2), 1–166 (2000)

    Article  ADS  Google Scholar 

  30. Ando, T.: Crossover between quantum and classical transport: quantum hall effect and carbon nanotubes. Physica E 20, 24–32 (2003)

    Article  ADS  Google Scholar 

  31. Pilgram, S., Samuelsson, P., Forster, H., Büttiker, M.: Full-counting statistics for voltage and dephasing probes. Phys. Rev. Lett. 97(6), 066801(4) (2006)

    Article  ADS  Google Scholar 

  32. Forster, H., Samuelsson, P., Pilgram, S., Büttiker, M.: Voltage and dephasing probes in mesoscopic conductors: A study of full-counting statistics. Phys. Rev. B 75(3), 035340(17) (2007)

    Article  ADS  Google Scholar 

  33. Engquist, H.-L., Anderson, P.W.: Definition and measurement of the electrical and thermal resistances. Phys. Rev. B 24(2), 1151–1154 (1981)

    Article  ADS  Google Scholar 

  34. Sivan, U., Imry, Y.: Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33(1), 551–558 (1986)

    Article  ADS  Google Scholar 

  35. Büttiker, M.: Symmetry of electrical conduction. IBM J. Res. Develop. 32(3), 317–334 (1988)

    Article  Google Scholar 

  36. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  37. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48(3), 032101–032128 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. Butcher, P.N.: Thermal and electrical transport formalism for electronic microstructures with many terminals. J. Phys., Condens. Matter 2(22), 4869–4878 (1990)

    Article  ADS  Google Scholar 

  39. Streda, P.: Quantised thermopower of a channel in the ballistic regime. J. Phys., Condens. Matter 1(5), 1025–1027 (1989)

    Article  ADS  Google Scholar 

  40. Beenakker, C.W.J., Staring, A.A.M.: Theory of the thermopower of a quantum dot. Phys. Rev. B 46(15), 9667–9676 (1992)

    Article  ADS  Google Scholar 

  41. Staring, A.A.M., Molenkamp, L.W., Alphenaar, B.W., van Houten, H., Buyk, O.J.A., Mabesoone, M.A.A., Beenakker, C.W.J., Foxon, C.T.: Coulomb-blockade oscillations in the thermopower of a quantum dot. Europhys. Lett. 22(1), 57–62 (1993)

    Article  ADS  Google Scholar 

  42. Molenkamp, L., Staring, A.A.M., Alphenaar, B.W., van Houten, H., Beenakker, C.W.J.: Sawtooth-like thermopower oscillations of a quantum dot in the coulomb blockade regime. Semicond. Sci. Technol. 9(5S), 903–906 (1994)

    Article  ADS  Google Scholar 

  43. Godijn, S.F., Möller, S., Buhmann, H., Molenkamp, L.W., van Langen, S.A.: Thermopower of a chaotic quantum dot. Phys. Rev. Lett. 82(14), 2927–2930 (1999)

    Article  ADS  Google Scholar 

  44. Lunde, A.M., Flensberg, K.: On the mott formula for the thermopower of non-interacting electrons in quantum point contacts. J. Phys., Condens. Matter 17(25), 3879–3884 (2005)

    Article  ADS  Google Scholar 

  45. Nakanishi, T., Kato, T.: Thermopower of a quantum dot in a coherent regime. J. Phys. Soc. Jpn. 76(3), 034715(6) (2007)

    Article  ADS  Google Scholar 

  46. Saito, K., Takesue, S., Miyashita, S.: Energy transport in the integrable system in contact with various types of phonon reservoirs. Phys. Rev. E 61(3), 2397–2409 (2000)

    Article  ADS  Google Scholar 

  47. Shapiro, B.: Classical transport within the scattering formalism. Phys. Rev. B 35(15), 8256–8259 (1987)

    Article  ADS  Google Scholar 

  48. Cahay, M., McLennan, M., Datta, S.: Conductance of an array of elastic scatterers: A scattering-matrix approach. Phys. Rev. B 37(17), 10125–10136 (1988)

    Article  ADS  Google Scholar 

  49. Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69(3), 731–808 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  50. Mezzadri, F.: How to generate random matrices from the classical compact groups. AMS 54(5), 592–604 (2007)

    MATH  MathSciNet  Google Scholar 

  51. Büttiker, M.: Negative resistance fluctuations at resistance minima in narrow quantum hall conductors. Phys. Rev. B 38(17), 12724–12727 (1988)

    Article  ADS  Google Scholar 

  52. Büttiker, M.: Chemical potential oscillations near a barrier in the presence of transport. Phys. Rev. B 40(5), 3409–3412 (1989)

    Article  ADS  Google Scholar 

  53. Levitov, L.S., Lesovik, G.B.: Charge distribution in quantum shot noise. JETP Lett. 58, 230–235 (1993)

    ADS  Google Scholar 

  54. Levitov, L.S., Lee, H., Lesovik, G.B.: Electron counting statistics and coherent states of electric current. J. Math. Phys. 37(10), 4845–4866 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. Bagrets, D.A., Nazarov, Yu.V.: Full counting statistics of charge transfer in coulomb blockade systems. Phys. Rev. B 67(8), 085316(16) (2003)

    Article  ADS  Google Scholar 

  56. Pilgram, S., Jordan, A.N., Sukhorukov, E.V., Büttiker, M.: Stochastic path integral formulation of full counting statistics. Phys. Rev. Lett. 90(20), 206801(4) (2003)

    Article  ADS  Google Scholar 

  57. Pilgram, S.: Electron-electron scattering effects on the full counting statistics of mesoscopic conductors. Phys. Rev. B 69(11), 115315(8) (2004)

    Article  ADS  MathSciNet  Google Scholar 

  58. Kindermann, M., Pilgram, S.: Statistics of heat transfer in mesoscopic circuits. Phys. Rev. B 69(15), 155334(8) (2004)

    Article  ADS  Google Scholar 

  59. Saito, K., Dhar, A.: Fluctuation theorem in quantum heat conduction. Phys. Rev. Lett. 99(18), 180601(4) (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe A. Jacquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacquet, P.A. ThermoElectric Transport Properties of a Chain of Quantum Dots with Self-Consistent Reservoirs. J Stat Phys 134, 709–748 (2009). https://doi.org/10.1007/s10955-009-9697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9697-1

Keywords

Navigation