Skip to main content

Advertisement

Log in

The Efficiency of Molecular Motors

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Molecular motors convert chemical energy into mechanical work while operating in an environment dominated by Brownian motion. The aim of this paper is to explore the flow of energy between the molecular motors and its surroundings, in particular, its efficiency. Based on the Fokker-Planck equation with either N or infinite chemical states, we find that the energy efficiency of molecular motors, whether the Stokes efficiency or the usual thermodynamic efficiency, is strictly less than one, because of the dissipation of the energy in both the overdamped surroundings and in the process of the chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, M.C., Drummond, D.R., Kain, S., Hoeng, J., Amos, L., Cross, R.A.: An ATP gate controls tibulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007)

    Article  ADS  Google Scholar 

  2. Asbury, C.L., Fehr, A.N., Block, S.M.: Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  ADS  Google Scholar 

  3. Astumian, R.D.: Biasing the random walk of a molecular motor. J. Phys. Condens. Matter 17, S3753–S3766 (2005)

    Article  ADS  Google Scholar 

  4. Block, S.M., Goldstein, L.S.B., Schnapp, B.J.: Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990)

    Article  ADS  Google Scholar 

  5. Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)

    Article  ADS  Google Scholar 

  6. Christof, J., Gebhardt, M., Clemen, A.E.-M., Jaud, J., Rief, M.: Myosin-v is a mechanical ratchet. Proc. Natl. Acad. Sci. USA 103, 8680–8685 (2006)

    Article  ADS  Google Scholar 

  7. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    Google Scholar 

  8. Hackney, D.D.: Processive motor movement. Science 316, 58–59 (2007)

    Article  Google Scholar 

  9. Hooft, A.M., Maki, E.J., Cox, K.K., Baker, J.E.: An accelerated state of myosin-based actin motility. Biochemistry 46, 3513–3520 (2007)

    Article  Google Scholar 

  10. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  11. Keller, D., Bustamante, C.: The mechanochemistry of molecular motors. Biophys. J. 78, 541–556 (2000)

    Article  Google Scholar 

  12. Kudo, S., Magariyama, Y., Aizawa, S.: Abrupt changes in flagella rotation observed by laser dark-filed microscopy. Nature 346, 677–680 (1990)

    Article  ADS  Google Scholar 

  13. Kull, F.J., Sablin, E.P., Fletterick, R.J., Vale, R.D.: Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996)

    Article  ADS  Google Scholar 

  14. Liepelt, S., Lipowsky, R.: Kinesin’s network of chemomechanical motor cycles. Phys. Rev. Lett. 98, 258102 (2007)

    Article  ADS  Google Scholar 

  15. Lindén, M., Wallin, M.: Dwell time symmetry in random walks and molecular motors. Biophys. J. 92, 3804–3816 (2007)

    Article  Google Scholar 

  16. Nishiyama, M., Higuchi, H., Yanagida, T.: Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002)

    Article  Google Scholar 

  17. Noji, H., Yasuda, R., Yoshida, M., Kinosita, K., Jr.: Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997)

    Article  Google Scholar 

  18. Parmeggiani, A., Julicher, F., Ajdari, A., Prost, J.: Energy transduction of isothermal ratchets: Generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60, 2127 (1999)

    Article  ADS  Google Scholar 

  19. Parrondo, J.M.R., De Cisneros, B.J.: Energetics of Brownian motors: a review. Appl. Phys. A 75, 179–191 (2002)

    Article  ADS  Google Scholar 

  20. Qian, H.: The mathematical theory of molecular motor movement and chemomechanical energy transduction. J. Math. Chem. 27, 219–234 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Qian, H.: Motor protein with nonequilibrium potential: Its thermodynamics and efficiency. Phys. Rev. E 69, 012901 (2004)

    Article  ADS  Google Scholar 

  22. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Sands, M., Feynman, R.P., Leighton, R.B.: The Feynman Lectures on Physics. Addison-Wesley, Reading (1963)

    Google Scholar 

  24. Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E., Oiwa, K.: Inner-arm dynein c of chlamydomonas flagella is a single-headed processive motor. Nature 400, 596–589 (1999)

    ADS  Google Scholar 

  25. Shiroguchi, K., Kinosita, K., Jr.: Myosin v walks by lever Brownian motion. Science 316, 1208–1212 (2007)

    Article  ADS  Google Scholar 

  26. Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    Article  Google Scholar 

  27. Taniguchi, Y., Nishiyama, M., Ishhi, Y., Yanagida, T.: Entropy rectifies the Brownian step of kinesin. Nat. Chem. Biol. 1, 342–347 (2005)

    Article  Google Scholar 

  28. Vale, R.D.: The way things move: Looking under the hood of molecular motor proteins. Science 288, 88 (2000)

    Article  ADS  Google Scholar 

  29. Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)

    Article  Google Scholar 

  30. Vale, R.D., Funatsu, T., Pierce, D.W., Romberg, L., Harada, Y., Yanagida, T.: Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996)

    Article  ADS  Google Scholar 

  31. Wang, H., Oster, G.: The stokes efficiency for molecular motors and its applications. Europhys. Lett. 57, 134–140 (2002)

    Article  ADS  Google Scholar 

  32. Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676 (2004)

    Article  Google Scholar 

  33. Zhang, Y.: Three phase model of the processive motor protein kinesin. Biophys. Chem. 136, 19–22 (2008)

    Article  Google Scholar 

  34. Zheng, W., Fan, D., Wang, Z., Feng, M.: Kinesin is an evolutionarily fine-tuned molecular ratchet-and-pawl device of decisively locked direction. Biophys. J. 93, 3363–3372 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y. The Efficiency of Molecular Motors. J Stat Phys 134, 669–679 (2009). https://doi.org/10.1007/s10955-009-9695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9695-3

Keywords

Navigation