Skip to main content
Log in

Statistical Properties of the Burgers Equation with Brownian Initial Velocity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the one-dimensional Burgers equation in the inviscid limit for Brownian initial velocity (i.e. the initial velocity is a two-sided Brownian motion that starts from the origin x=0). We obtain the one-point distribution of the velocity field in closed analytical form. In the limit where we are far from the origin, we also obtain the two-point and higher-order distributions. We show how they factorize and recover the statistical invariance through translations for the distributions of velocity increments and Lagrangian increments. We also derive the velocity structure functions and we recover the bifractality of the inverse Lagrangian map. Then, for the case where the initial density is uniform, we obtain the distribution of the density field and its n-point correlations. In the same limit, we derive the n-point distributions of the Lagrangian displacement field and the properties of shocks. We note that both the stable-clustering ansatz and the Press-Schechter mass function, that are widely used in the cosmological context, happen to be exact for this one-dimensional version of the adhesion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970)

    Google Scholar 

  2. Aurell, E., Gurbatov, S.N., Wertgeim, I.I.: Self-preservation of large-scale structures in Burgers’ turbulence. Phys. Lett. A 182, 109–113 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aurell, E., Frisch, U., Noullez, A., Blank, M.: Bifractality of the devil’s staircase appearing in the Burgers equation with Brownian initial velocity. J. Stat. Phys. 88, 1151–1164 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Balian, R., Schaeffer, R.: Scale-invariant matter distribution in the universe. I—Counts in cells. Astron. Astrophys. 220, 1–29 (1989)

    ADS  MathSciNet  Google Scholar 

  5. Balian, R., Schaeffer, R.: Scale-invariant matter distribution in the universe. II—Bifractal behaviour. Astron. Astrophys. 226, 373–414 (1989)

    ADS  MathSciNet  Google Scholar 

  6. Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447, 1–66 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bernardeau, F.: The effects of smoothing on the statistical properties of large-scale cosmic fields. Astron. Astrophys. 291, 697–712 (1994)

    ADS  Google Scholar 

  8. Bernardeau, F., Colombi, S., Gaztaaga, E., Scoccimarro, R.: Large-scale structure of the universe and cosmological perturbation theory. Phys. Rep. 367, 1–248 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Bertoin, J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397–406 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Burgers, J.M.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (1974)

    MATH  Google Scholar 

  11. Burkhardt, T.W.: Semiflexible polymer in the half plane and statistics of the integral of a Brownian curve. J. Phys. A 26, L1157–L1162 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Carraro, L., Duchon, J.: Equation de Burgers avec conditions initiales a accroissements independants et homogenes. Ann. Inst. Henri Poincare 15, 431–458 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cole, J.D.: On a quasi-linear parabolic equation occuring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)

    MATH  MathSciNet  Google Scholar 

  14. Colombi, S., Bouchet, F.R., Schaeffer, R.: Large scale structure statistics: Finite volume effects. Astron. Astrophys. 281, 301–313 (1994)

    ADS  Google Scholar 

  15. Davis, M., Peebles, P.J.E.: On the integration of the bbgky equations for the development of strongly nonlinear clustering in an expanding universe. Astrophys. J. Suppl. S. 34, 425–450 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fournier, J.-D., Frisch, U.: L’equation de Burgers deterministe et statistique. J. Mec. Theor. Appl. 2, 699–750 (1983)

    MATH  ADS  MathSciNet  Google Scholar 

  17. Frachebourg, L., Martin, Ph.A.: Exact statistical properties of the Burgers equation. J. Fluid Mech. 417, 323–349 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Frisch, U., Bec, J.: “Burgulence”. In: Lesieur, M., Yaglom, A., David, F. (eds.) Les Houches 2000: New trends in turbulence. Springer, Berlin (2001)

    Google Scholar 

  19. Frisch, U., Bec, J., Aurell, E.: “Locally homogeneous turbulence” is it an inconsistent framework? Phys. Fluids 17, 081706 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fry, J.N.: Galaxy n-point correlation functions—theoretical amplitudes for arbitrary n. Astrophys. J. 277, L5–L8 (1984)

    Article  ADS  Google Scholar 

  21. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1965)

    Google Scholar 

  22. Gurbatov, S., Malakhov, A., Saichev, A.: Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles. Manchester University Press, Manchester (1991)

    MATH  Google Scholar 

  23. Gurbatov, S.N., Pasmanik, G.V.: Self-preservation of large-scale structures in a nonlinear viscous medium described by the Burgers equation. Sov. Phys. JETP 88, 309–319 (1999)

    Article  Google Scholar 

  24. Gurbatov, S.N., Saichev, A.I.: Degeneracy of one-dimensional acoustic turbulence at large Reynolds numbers. Sov. Phys. JETP 53, 347–354 (1981)

    Google Scholar 

  25. Gurbatov, S.N., Saichev, A.I., Shandarin, S.F.: The large-scale structure of the universe in the frame of the model equation of non-linear diffusion. Mon. Not. R. Astron. Soc. 236, 385–402 (1989)

    MATH  ADS  Google Scholar 

  26. Gurbatov, S.N., Simdyankin, S.I., Aurell, E., Frisch, U., Toth, G.: On the decay of Burgers turbulence. J. Fluid Mech. 344, 339–374 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Hagan, P.S., Doering, C.R., Levermore, C.D.: The distribution of exit times for weakly colored noise. J. Stat. Phys. 54, 1321–1352 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Hopf, E.: The partial differential equation u t +uu x =u xx . Commun. Pure Appl. Mech. 3, 201–230 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kida, S.: Asymptotic properties of Burgers turbulence. J. Fluid Mech. 93, 337–377 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Le Doussal, P.: Exact results and open questions in first principle functional rg. arXiv:0809.1192 (2008)

  31. Marshall, T.W., Watson, E.J.: A drop of ink falls from my pen... it comes to earth, I know not when. J. Phys. A, Math. Gen. 18, 3531–3559 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Marshall, T.W., Watson, E.J.: The analytic solutions of some boundary layer problems in the theory of Brownian motion. J. Phys. A, Math. Gen. 20, 1345–1354 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Melott, A.L., Shandarin, S.F., Weinberg, D.H.: A test of the adhesion approximation for gravitational clustering. Astrophys. J. 428, 28–34 (1994)

    Article  ADS  Google Scholar 

  34. Molchan, G.M.: Burgers equation with self-similar Gaussian initial data: tail probabilities. J. Stat. Phys. 88, 1139–1150 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Molchanov, S.A., Surgailis, D., Woyczynski, W.A.: Hyperbolic asymptotics in Burgers’ turbulence and extremal processes. Commun. Math. Phys. 168, 209–226 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Noullez, A., Gurbatov, S.N., Aurell, E., Simdyankin, S.I.: Global picture of self-similar and non-self-similar decay in Burgers turbulence. Phys. Rev. E 71, 056305 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Peebles, P.J.E.: The Large Scale Structure of the Universe. Princeton University Press, Princeton (1980)

    Google Scholar 

  38. Press, W., Schechter, P.: Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974)

    Article  ADS  Google Scholar 

  39. Prodinger, H., Urbanek, F.J.: On monotone functions of tree structures. Discrete Appl. Math. 5, 223–239 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  40. Schaeffer, R.: The probability generating function for galaxy clustering. Astron. Astrophys. 144, L1–L4 (1985)

    Google Scholar 

  41. She, Z.-S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623–641 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Sheth, R.K., Tormen, G.: Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119–126 (1999)

    Article  ADS  Google Scholar 

  43. Sinai, Ya.G.: Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148, 601–621 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Valageas, P.: Non-linear gravitational clustering: smooth halos, substructures and scaling exponents. Astron. Astrophys. 347, 757–768 (1999)

    Google Scholar 

  45. Valageas, P.: Dynamics of gravitational clustering. II. Steepest-descent method for the quasi-linear regime. Astron. Astrophys. 382, 412–430 (2002)

    Article  MATH  ADS  Google Scholar 

  46. Valageas, P.: Dynamics of gravitational clustering. IV. The probability distribution of rare events. Astron. Astrophys. 382, 450–476 (2002)

    Article  MATH  ADS  Google Scholar 

  47. Valageas, P.: Using the Zeldovich dynamics to test expansion schemes. Astron. Astrophys. 476, 31–58 (2007)

    Article  MATH  ADS  Google Scholar 

  48. Valageas, P.: Ballistic aggregation for one-sided Brownian initial velocity. Physica A 388, 1031–1045 (2009). arXiv:0809.1192

    Article  Google Scholar 

  49. Valageas, P., Munshi, D.: Evolution of the cosmological density distribution function: a new analytical model. Mon. Not. R. Astron. Soc. 354, 1146–1158 (2004)

    Article  ADS  Google Scholar 

  50. Vallée, O., Soares, M.: Les Fonctions d’Airy pour la Physique. Diderot, Paris (1998)

    Google Scholar 

  51. Vergassola, M., Dubrulle, B., Frisch, U., Noullez, A.: Burgers’equation, devil’s staircases and the mass distribution for large-scale structures. Astron. Astrophys. 289, 325–356 (1994)

    ADS  Google Scholar 

  52. Zeldovich, Y.B.: Gravitational instability: An approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Valageas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valageas, P. Statistical Properties of the Burgers Equation with Brownian Initial Velocity. J Stat Phys 134, 589–640 (2009). https://doi.org/10.1007/s10955-009-9685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9685-5

Keywords

Navigation