Skip to main content
Log in

Steady State of Stochastic Sandpile Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the steady state of the Abelian sandpile models with stochastic toppling rules. The particle addition operators commute with each other, but in general these operators need not be diagonalizable. We use their Abelian algebra to determine their eigenvalues, and the Jordan block structure. These are then used to determine the probability of different configurations in the steady state. We illustrate this procedure by explicitly determining the numerically exact steady state for a one dimensional example, for systems of size ≤12, and also study the density profile in the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dhar, D.: Theoretical studies of self-organized criticality. Physica A 369, 29 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Manna, S.S.: Two-state model of self-organized criticality. J. Phys. A, Math. Gen. 24, L363 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Frette, V., Christensen, K., Mathe-Sorensen, A., Feder, J., Jossang, T., Meakin, P.: Avalanche dynamics in a pile of rice. Nature 379, 49 (1996)

    Article  ADS  Google Scholar 

  4. Chessa, A., Vespignani, A., Zapperi, S.: Critical exponents in stochastic sandpile models. Comput. Phys. Commun. 121, 299 (1999)

    Article  Google Scholar 

  5. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Povolotsky, A.M., Priezzhev, V.B., Hu, C.K.: The asymmetric avalanche process. J. Stat. Phys. 3, 1149 (2003)

    Article  MathSciNet  Google Scholar 

  8. Alcaraz F.C., Rittenberg V.: Directed Abelian algebras and their applications to stochastic models. arXiv:0806.1303

  9. Kloster, M., Maslov, S., Tang, C.: Exact solution of a stochastic directed sandpile model. Phys. Rev. E 63, 026111 (2001)

    Article  ADS  Google Scholar 

  10. Paczuski, M., Bassler, K.E.: Theoretical results for sandpile models of self-organized criticality with multiple topplings. Phys. Rev. E 62, 5347 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dhar, D.: Steady state and relaxation spectrum of the Oslo rice-pile model. Physica A 340, 535 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dickman, R., Alva, M., Muñoz, M., Peltola, J., Vespignani, A., Zapperi, S.: Critical behavior of a one-dimensional fixed-energy stochastic sandpile. Phys. Rev. E 64, 056104 (2001)

    Article  ADS  Google Scholar 

  13. Stilck, J.F., Dickman, R., Vidigal, R.R.: Series expansion for a stochastic sandpile. J. Phys. A, Math. Gen. 37, 1145 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Vidigal, R.R., Dickman, R.: Asymptotic behavior of the order parameter in a stochastic sandpile. J. Stat. Phys. 118, 1 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Diaz-Guilera, A.: Noise and dynamics of self-organized critical phenomena. Phys. Rev. A 45, 8551 (1992)

    Article  ADS  Google Scholar 

  16. Vespignani, A., Zapperi, S., Pietronero, L.: Renormalization approach to the self-organized critical behavior of sandpile models. Phys. Rev. E 51, 1711 (1995)

    Article  ADS  Google Scholar 

  17. Vespignani, A., Dickman, R., Munoz, M., Zapperi, S.: Driving, conservation, and absorbing states in sandpiles. Phys. Rev. Lett. 81, 5676 (1998)

    Article  Google Scholar 

  18. Ben-Hur, A., Biham, O.: Universality in sandpile models. Phys. Rev. E 53, R1317 (1996)

    Article  ADS  Google Scholar 

  19. Lubeck, S., Usadel, K.D.: Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model. Phys. Rev. E 55, 4095 (1997)

    Article  ADS  Google Scholar 

  20. Milshtein, E., Biham, O., Solomon, S.: Universality classes in isotropic, Abelian, and non-Abelian sandpile models. Phys. Rev. E 58, 303 (1998)

    Article  Google Scholar 

  21. Lubeck, S.: Moment analysis of the probability distribution of different sandpile models. Phys. Rev. E 61, 204 (2000)

    Article  ADS  Google Scholar 

  22. Menech, M.D., Stella, A.L.: From waves to avalanches: Two different mechanisms of sandpile dynamics. Phys. Rev. E 62, R4528 (2000)

    Article  ADS  Google Scholar 

  23. Dickman, R., Campelo, J.M.M.: Avalanche exponents and corrections to scaling for a stochastic sandpile. Phys. Rev. E 67, 066111 (2003)

    Article  ADS  Google Scholar 

  24. Satorras, R., Vespignani, A.: Universality classes in directed sandpile models. J. Phys. A 33, L33 (2000)

    Article  Google Scholar 

  25. Biham, O., Milshtein, E., Malcai, O.: Evidence for universality within the class of deterministic and stochastic sandpile models. Phys. Rev. E 63, 061309 (2001)

    Article  ADS  Google Scholar 

  26. Bonachela, J.A., Munoz, M.: Confirming and extending the hypothesis of universality in sandpiles. arXiv:0806.4079

  27. Bonachela, J.A., Munoz, M.: How to discriminate easily between directed percolation and Manna scaling. Physica A 384, 89 (2007)

    Article  ADS  Google Scholar 

  28. Mohanty, P.K., Dhar, D.: Generic sandpiles have directed percolation exponents. Phys. Rev. Lett. 89, 104303 (2002)

    Article  ADS  Google Scholar 

  29. Bonachela, J.A., Ramasco, J.J., Chate, H., Dornic, I., Munoz, M.A.: Sticky grains do not change the universality class of isotropic sandpiles. Phys. Rev. E 74, 050102 (2006)

    Article  ADS  Google Scholar 

  30. Mohanty, P.K., Dhar, D.: Critical behavior of sandpile models with sticky grains. Physica A 384, 34 (2007)

    Article  ADS  Google Scholar 

  31. Dhar, D.: Some results and a conjecture for Manna’s stochastic sandpile model. Physica A 270, 69 (1999)

    Article  ADS  Google Scholar 

  32. Schutz, G.M., Ramaswamy, R., Barma, M.: Pairwise balance and invariant measures for generalized exclusion processes. J. Phys. A, Math. Gen. 29, 837 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. Lubeck, S., Dhar, D.: Continuously varying exponents in sandpile models. J. Stat. Phys. 102, 1 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tridib Sadhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadhu, T., Dhar, D. Steady State of Stochastic Sandpile Models. J Stat Phys 134, 427–441 (2009). https://doi.org/10.1007/s10955-009-9683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9683-7

Keywords

Navigation