Skip to main content
Log in

Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise (α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise (α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space-filling tessellations, which suggests a weaker form of the recently disproved Kelvin conjecture. Moreover, whereas the size of the isoperimetric quotient fluctuations go to zero linearly with noise in the SC and BCC case, the decrease is quadratic in the FCC case. Correspondingly, anomalous scaling relations with exponents larger than 3/2 are observed between the area and the volumes of the cells for all cases considered, and, except for the FCC structure, also for infinitesimal noise. In the Poisson-Voronoi limit, the exponent is ∼1.67. The anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. The FCC structure, in spite of being topologically unstable, results to be the most stable against noise when the shape—as measured by the isoperimetric quotient—of the cells is considered. These scaling relations apply only for a finite range and should be taken as descriptive of the bulk statistical properties of the cells. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders, Philadelphia (1976)

    Google Scholar 

  2. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991)

    Article  Google Scholar 

  3. Averill, F.W., Painter, G.S.: Pseudospherical integration scheme for electronic-structure calculations. Phys. Rev. B 39, 8115 (1989)

    Article  ADS  Google Scholar 

  4. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrett, T.M.: Voronoi tessellation methods to delineate harvest units for spatial forest planning. Can. J. For. Res. 27(6), 903–910 (1997)

    Article  Google Scholar 

  6. Bassani, F., Pastori-Parravicini, G.: Electronic States and Optical Transitions in Solids. Pergamon, Oxford (1975)

    Google Scholar 

  7. Bennett, L.H., Kuriyama, M., Long, G.G., Melamud, M., Watson, R.E., Weinert, M.: Local atomic environments in periodic and aperiodic Al-Mn alloys. Phys. Rev. B 34, 8270–8272 (1986)

    Article  ADS  Google Scholar 

  8. Bowyer, A.: Computing Dirichlet tessellations. Comput. J. 24, 162–166 (1981)

    Article  MathSciNet  Google Scholar 

  9. Calka, P.: Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson Voronoi tessellation and a Poisson line process. Adv. Appl. Probab. 35, 551–562 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Christ, N.H., Friedberg, R., Lee, T.D.: Random lattice field theory: general formulation. Nucl. Phys. B 202, 89–125 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)

    MATH  Google Scholar 

  12. Desch, C.H.: The solidification of metals from the liquid state. J. Inst. Met. 22, 241 (1919)

    Google Scholar 

  13. Dotera, T.: Cell crystals: Kelvin’s polyhedra in block copolymer melts. Phys. Rev. Lett. 82, 105–108 (1999)

    Article  ADS  Google Scholar 

  14. Drouffe, J.M., Itzykson, C.: Random geometry and the statistics of two-dimensional cells. Nucl. Phys. B 235, 45–53 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Du, Q., Wang, D.: The optimal centroidal Voronoi tessellations and the Gersho’s conjecture in the three dimensional space. Comput. Math. Appl. 49, 1355–1373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Entezari, A., Van De Ville, D., Möller, T.: Practical box splines for reconstruction on the body centered cubic lattice. IEEE Trans. Vis. Comput. Graph. 14, 313–328 (2008)

    Article  Google Scholar 

  17. Finch, S.R.: Unpublished. Available on http://algo.inria.fr/csolve/vi.pdf. (2005). Addendum to Finch S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

  18. Finney, J.L.: Volume occupation, environment and accessibility in proteins. The problem of the protein surface. J. Mol. Biol. 96, 721–732 (1975)

    Article  Google Scholar 

  19. Goede, A., Preissner, R., Frömmel, C.: Voronoi cell: new method for allocation of space among atoms: elimination of avoidable errors in calculation of atomic volume and density. J. Comput. Chem. 18, 1113–1118 (1997)

    Article  Google Scholar 

  20. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Han, D., Bray, M.: Automated Thiessen polygon generation. Water Resour. Res. 42, W11502 (2006). doi:10.1029/2005WR004365

    Article  ADS  Google Scholar 

  22. Hentschel, H.G.E., Ilyin, V., Makedonska, N., Procaccia, I., Schupper, N.: Statistical mechanics of the glass transition as revealed by a Voronoi tessellation. Phys. Rev. E 75, 50404(R) (2007)

    Article  ADS  Google Scholar 

  23. Hilhorst, H.J.: Asymptotic statistics of the n-sided planar Poisson–Voronoi cell: I. Exact results. J. Stat. Mech. (2005). P09005 doi:10.1088/1742-5468/2005/09/P09005

    Google Scholar 

  24. Hinde, A.L., Miles, R.E.: Monte Carlo estimates of the distributions of the random polygons of the Voronoi tessellation with respect to a Poisson process. J. Stat. Comput. Simul. 10, 205–223 (1980)

    Article  MATH  Google Scholar 

  25. Hug, D., Schneider, R.: Typical cells in Poisson hyperplane tessellations. Discrete Comput. Geom. 38, 305–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hug, D., Reitzner, M., Schneider, R.: The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 32, 1140–1167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Icke, V.: Particles, space and time. Astrophys. Space Sci. 244, 293–312 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  28. Karch, R., Neumann, M., Neumann, F., Ullrich, R., Neumüller, J., Schreiner, W.: A Gibbs point field model for the spatial pattern of coronary capillaries. Physica A 369, 599–611 (2006)

    Article  ADS  Google Scholar 

  29. Kovalenko, I.N.: Proof of David Kendall’s conjecture concerning the shape of large random polygons. Cybern. Syst. Anal. 33, 461–467 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kumar, S., Kurtz, S.K., Banavar, J.R., Sharma, M.G.: Properties of a three-dimensional Poisson-Voronoi tessellation: a Monte Carlo study. J. Stat. Phys. 67, 523–551 (1992)

    Article  MATH  ADS  Google Scholar 

  31. Isokawa, Y.: Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces. Adv. Appl. Probl. 32, 648–662 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lewis, F.T.: The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of Cucumis. Anat. Rec. 38, 341–376 (1928)

    Article  Google Scholar 

  33. Li, S., Wongsto, A.: Unit cells for micromechanical analyses of particle-reinforced composites. Mech. Mater. 36, 543–572 (2004)

    Article  Google Scholar 

  34. Lucarini, V.: From symmetry breaking to Poisson point process in 2D Voronoi tessellations: the generic nature of hexagons. J. Stat. Phys. 130, 1047–1062 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Lucarini, V., Danihlik, E., Kriegerova, I., Speranza, A.: Does the Danube exist? Versions of reality given by various regional climate models and climatological data sets. J. Geophys. Res. 112, D13103 (2007). doi:10.1029/2006JD008360

    Article  ADS  Google Scholar 

  36. Lucarini, V., Danihlik, R., Kriegerova, I., Speranza, A.: Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models. J. Geophys. Res. 113, D09107 (2008). doi:10.1029/2007JD009167

    Article  Google Scholar 

  37. Luchnikov, V.A., Medvedev, N.N., Naberukhin, Yu.I., Schober, H.R.: Voronoi-Delaunay analysis of normal modes in a simple model glass. Phys. Rev. B 62, 3181 (2000)

    Article  ADS  Google Scholar 

  38. Meijering, J.L.: Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep. 8, 270–290 (1953)

    MATH  Google Scholar 

  39. Miles, R.E.: A synopsis of Poisson flats in Euclidean spaces. In: Harding, E.F., Kendall, D.G. (eds.) Stochastic Geometry, pp. 202–227. Wiley, London (1974)

    Google Scholar 

  40. Møller, J.: Random tessellations in R d. Adv. Appl. Prob. 21, 37–73 (1989)

    Article  Google Scholar 

  41. Møller, J.: Aspects of spatial statistics, stochastic geometry and Markov chain Monte Carlo. Aalborg, Aalborg University (1999)

  42. Newman, D.: The Hexagon Theorem. IEEE Trans. Inf. Theory 28, 129–137 (1982)

    Article  Google Scholar 

  43. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations—Concepts and Applications of Voronoi Diagrams, 1st edn. Wiley, West Sussex (1992)

    MATH  Google Scholar 

  44. Rapaport, D.C.: Hexagonal convection patterns in atomistically simulated fluids. Phys. Rev. E 73, 025301 (2006)

    Article  ADS  Google Scholar 

  45. Rapcewicz, K., Chen, B., Yakobson, B., Bernholc, J.: Consistent methodology for calculating surface and interface energies. Phys. Rev. B 57, 007281 (1998)

    Article  ADS  Google Scholar 

  46. Senthil Kumar, V., Kumaran, V.: Voronoi neighbor statistics of hard-disks and hard-spheres. J. Chem. Phys. 123, 074502 (2005)

    Article  ADS  Google Scholar 

  47. Sortais, M., Hermann, S., Wolisz, A.: Analytical investigation of intersection-based range-free localization information gain. In: Proc. of European Wireless (2007)

  48. Soyer, A., Chomilier, J., Mornon, J.P., Jullien, R., Sadoc, J.F.: Voronoi tessellation reveals the condensed matter character of folded proteins. Phys. Rev. Lett. 85, 3532–3535 (2000)

    Article  ADS  Google Scholar 

  49. Tanemura, M.: Statistical distributions of Poisson-Voronoi cells in two and three dimensions. Forma 18, 221–247 (2003)

    MathSciNet  Google Scholar 

  50. Tanemura, M., Ogawa, T., Ogita, N.: A new algorithm for three-dimensional Voronoi tessellation. J. Comput. Phys. 51, 191–207 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Troadec, J.P., Gervois, A., Oger, L.: Statistics of Voronoi cells of slightly perturbed face-centered cubic and hexagonal close-packed lattices. Europhys. Lett. 42, 167–172 (1998)

    Article  ADS  Google Scholar 

  52. Tsai, F.T.-C., Sun, N.-Z., Yeh, W.W.-G.: Geophysical parameterization and parameter structure identification using natural neighbors in groundwater inverse problems. J. Hydrol. 308, 269–283 (2004)

    Article  Google Scholar 

  53. Tsumuraya, K., Ishibashi, K., Kusunoki, K.: Statistics of Voronoi polyhedra in a model silicon glass. Phys. Rev. B 47, 8552 (1993)

    Article  ADS  Google Scholar 

  54. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire: sur quelques propriétées des formes quadritiques positives parfaites. J. Reine Angew. Math. 133, 97–178 (1907)

    Google Scholar 

  55. Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Duesieme memoire: recherches sur les paralleloderes primitifs. J. Reine Angew. Math. 134, 198–287 (1908)

    MATH  Google Scholar 

  56. Watson, D.F.: Computing the n-dimensional tessellation with application to Voronoi polytopes. Comput. J. 24, 167–172 (1981)

    Article  MathSciNet  Google Scholar 

  57. Weaire, D., Phelan, R.: A counter-example to Kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett. 69, 107–110 (1994)

    Article  ADS  Google Scholar 

  58. Weaire, D., Kermode, J.P., Wejchert, J.: On the distribution of cell areas in a Voronoi network. Philos. Mag. B 53, L101–L105 (1986)

    Google Scholar 

  59. Yu, D.-Q., Chen, M., Han, X.-J.: Structure analysis methods for crystalline solids and supercooled liquids. Phys. Rev. E 72, 051202 (2005)

    Article  ADS  Google Scholar 

  60. Zhu, H.X., Thorpe, S.M., Windle, A.H.: The geometrical properties of irregular two-dimensional Voronoi tessellations. Philos. Mag. A 81, 2765–2783 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Lucarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucarini, V. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes. J Stat Phys 134, 185–206 (2009). https://doi.org/10.1007/s10955-008-9668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9668-y

Keywords

Navigation