Skip to main content
Log in

Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We find the limit of the variance and prove the Central Limit Theorem (CLT) for the matrix elements φ jk (M), j,k=1,…,n of a regular function φ of the Gaussian matrix M (GOE and GUE) as its size n tends to infinity. We show that unlike the linear eigenvalue statistics Tr φ(M), a traditional object of random matrix theory, whose variance is bounded as n→∞ and the CLT is valid for Tr φ(M)−E{Tr φ(M)}, the variance of φ jk (M) is O(1/n), and the CLT is valid for \(\sqrt{n}(\varphi _{jk}(M)-\mathbf{E}\{\varphi _{jk}(M)\})\) . This shows the role of eigenvectors in the forming of the asymptotic regime of various functions (statistics) of random matrices. Our proof is based on the use of the Fourier transform as a basic characteristic function, unlike the Stieltjes transform and moments, used in majority of works of the field. We also comment on the validity of analogous results for other random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anderson, G.W., Zeitouni, O.: CLT for a band matrix model. Probab. Theory Relat. Fields 134, 283–338 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bai, Z.D.: Methodologies in spectral analysis of large dimensional random matrices: a review. Stat. Sinica 9(3), 611–661 (1999)

    MATH  Google Scholar 

  3. Bai, Z.D., Silverstein, J.W.: CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab. 32, 553–605 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bogachev, V.I.: Gaussian Measures. Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  5. Boutet de Monvel, A., Pastur, L., Shcherbina, M.: On the statistical mechanics approach to the random matrix theory: the integrated density of states. J. Stat. Phys. 79, 585–611 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brouwer, P.W., Beenakker, C.W.J.: Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems. J. Math. Phys. 37, 4904–4934 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chatterjee, S., Bose, A.: A new method for bounding rates of convergence of empirical spectral distributions. J. Theor. Probab. 17, 1003–1019 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. D’Aristotile, A., Diaconis, P., Newman, C.: Brownian motion and the classical groups. In: Probability, Statistics and Their Applications: Papers in Honor of Rabi Bhattacharya. IMS Lecture Notes—Monograph Series, vol. 41, pp. 97–116. Inst. Math. Statist., Beachwood (2003)

    Chapter  Google Scholar 

  9. Diaconis, P., Evans, S.: Linear functionals of eigenvalues of random matrices. Trans. AMS 353, 2615–2633 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Girko, V.L.: Spectral Theory of Random Matrices. Nauka, Moscow (1988) (in Russian)

    MATH  Google Scholar 

  11. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91, 151–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khorunzhy, A.M., Khoruzhenko, B.A., Pastur, L.A.: Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 10(37), 5033–5060 (1996)

    Article  MathSciNet  Google Scholar 

  13. Mehta, L.: Random Matrices. Academic Press, New York (1991)

    MATH  Google Scholar 

  14. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  15. Pastur, L.: A simple approach to the global regime of Gaussian Ensembles of random matrices. Ukrainian Math. J. 57, 936–966 (2005)

    Article  MathSciNet  Google Scholar 

  16. Pastur, L.: Limiting laws of linear eigenvalue statistics for unitary invariant matrix models. J. Math. Phys. 47, 103303 (2006)

    Article  MathSciNet  Google Scholar 

  17. Pastur, L., Shcherbina, M.: Universality of the local eigenvalue statistics for a class of unitary invariant matrix ensembles. J. Stat. Phys. 86, 109–147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pastur, L., Shcherbina, M.: Bulk universality and related properties of hermitian matrix models. J. Stat. Phys. 130, 205–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Chelsea, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lytova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lytova, A., Pastur, L. Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices. J Stat Phys 134, 147–159 (2009). https://doi.org/10.1007/s10955-008-9665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9665-1

Keywords

Navigation