Skip to main content

Advertisement

Log in

Stochastic Description of Traffic Flow

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a traffic model based on microscopic stochastic dynamics. We built a Markov chain equipped with an Arrhenius interaction law. The resulting stochastic process is comprised of both spin-flip and spin-exchange dynamics which models vehicles exiting, entering and interacting in a two-dimensional lattice environment corresponding to a multi-lane highway. The process is further equipped with a novel look-ahead type, anisotropic interaction potential which allows drivers/vehicles to ascertain local fluctuations and advance to new cells forward or sideways. The resulting vehicular traffic model is simulated via kinetic Monte Carlo and examined under both, typical and extreme traffic flow scenarios. The model is shown to correctly predict both qualitative as well as quantitative traffic observables for any highway geometry. Furthermore it also captures interesting multi-scale phenomena in traffic flows after a simulated accident which lead to oscillatory, dissipating, traffic waves with different periods per lane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcelic: Traffic models-research and software for the transport industry (2007). http://www.sidrasolutions.com, accessed Oct. 10

  2. Athol, P.: Interdependence of certain operational characteristics within a moving traffic stream. In: Highway Research Record, pp. 58–97 (1972)

  3. Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60, 916 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulations of Ising spin systems. J. Comput. Phys. 17, 10 (1975)

    Article  ADS  Google Scholar 

  5. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. B 29, 277 (1995)

    Article  Google Scholar 

  6. Hall, F.L.: Traffic Flow Theory, pp. 2–34. US Federal Highway Administration, Washington (1996)

    Google Scholar 

  7. HCM: Highway capacity manual. Tech. rep., Transportation Research Board (1985)

  8. HCM: Highway capacity manual. Tech. rep., Transportation Research Board, Washington, DC (2000)

  9. Helbing, D.: Gas-kinetic derivation of Navier-Stokes-like traffic equations. Phys. Rev. E 53(3), 2366 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. Helbing, D.: Modeling multi-lane traffic flow with queuing effects. cond-mat.stat-mech (1998)

  11. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067 (2001). cond-mat/0012229

    Article  ADS  Google Scholar 

  12. Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: Micro and macro simulation of freeway traffic. Math. Comput. Model. 35, 517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hildebrand, M., Mikhailov, A.S.: J. Phys. Chem. 100, 19089 (1996)

    Article  Google Scholar 

  14. Illner, R., Klar, A., Materne, T.: Vlasov-Fokker-Planck models for multilane traffic flow. Commun. Math. Sci. 1, 1 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Jiang, R., Wu, Q.S.: Cellular automata models for synchronized traffic flow. J. Phys. A 36(2), 281 (2003)

    Article  MathSciNet  Google Scholar 

  16. Jin, S., Liu, J.G.: Relaxation and diffusion enhanced dispersive waves. Proc. R. Soc. Lond. A 446, 555–563 (1994)

    Article  MATH  ADS  Google Scholar 

  17. Kanai, M., Nishinari, K., Tokihiro, T.: Stochastic optimal velocity model and its long-lived metastability. Phys. Rev. E 72 (2005)

  18. Katsoulakis, M., Sopasakis, A., Plechac, P.: Error analysis of coarse-graining for stochastic lattice dynamics. SIAM J. Numer. Anal. (2006)

  19. Kerner, B.S., Klenov, S.L.: A microscopic model for phase transitions in traffic flow. J. Phys. A 35, 31 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kerner, B.S., Klenov, S.L., Wolf, D.E.: Cellular automata approach to three-phase traffic theory. J. Phys. A: Math. Gen. 35, 9971 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Klar, A., Wegener, R.: A hierarchy of models for multilane vehicular traffic i: modeling. SIAM J. Appl. Math. 59(3), 983–1001 (1995)

    Article  MathSciNet  Google Scholar 

  22. Kurtze, D.A., Hong, D.S.: Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52, 218–221 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  23. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    MATH  Google Scholar 

  24. Lubashevsky, I.A., Mahnke, R.: Order parameter model for unstable multilane traffic flow. cond-math/9910268 v2 (2000)

  25. Masi, A.D., Orlandi, E., Pressuti, E., Triolo, L.: Proc. R. Soc. Edinb. A 124, 1013 (1994)

    MATH  Google Scholar 

  26. McShane, W.R., Roess, R.P.: Traffic Engineering. Prentice-Hall, Englewood Cliff (1990)

    Google Scholar 

  27. Muramatsu, M., Nagatani, T.: Phys. Rev. E 60, 180 (1999)

    Article  ADS  Google Scholar 

  28. Nagatani, T.: Jamming transitions and the modified Korteweg-de Vries equation in a two-lane traffic flow. Physica A 265, 297–310 (1999)

    Article  Google Scholar 

  29. Nagatani, T.: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60, 1535 (1999)

    Article  ADS  Google Scholar 

  30. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65, 1331 (2002)

    Article  ADS  Google Scholar 

  31. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2, 2221 (1992)

    Article  Google Scholar 

  32. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.: Two-lane traffic rules for cellular automata: a systematic approach. Phys. Rev. E 58(2), 1425 (1998)

    Article  ADS  Google Scholar 

  33. Nelson, P.: Phys. Rev. E 61, 383 (2000)

    Article  Google Scholar 

  34. Nelson, P.: On two-regime flow, fundamental diagrams and kinematic-wave theory. In progress (2004)

  35. Newell, G.F.: Nonlinear effects in theory of car following. Oper. Res. 9, 209–229 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  36. Newell, G.F.: Transp. Res. B 23, 386 (1989)

    Article  MathSciNet  Google Scholar 

  37. Phillips, W.F.: Transp. Plann. Technol. 5, 131 (1979)

    Article  Google Scholar 

  38. Rathi, A.K., Lieberman, E.B., Yedlin, M.: Transp. Res. Rec. 61, 1112 (1987)

    Google Scholar 

  39. Ross, P.: Transp. Res. B 22, 421 (1988)

    Article  Google Scholar 

  40. Schadschneider, A.: Traffic flow: a statistical physics point of view. Physica A 312, 153 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. Schreckenberg, M., Wolf, D.E.: Traffic and Granular Flow. Springer, Singapore (1998)

    Google Scholar 

  42. Sopasakis, A.: Unstable flow theory and modeling. Math. Comput. Model. 35(5–6), 623 (2002)

    MATH  MathSciNet  Google Scholar 

  43. Sopasakis, A.: Stochastic noise approach to traffic flow modeling. Physica A 342(3-4), 741–754 (2004)

    Article  ADS  Google Scholar 

  44. Sopasakis, A., Katsoulakis, M.A.: Stochastic modeling and simulation of traffic flow: ASEP with Arrhenius look-ahead dynamics. SIAM J. Appl. Math. 66(3), 921–944 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sparmann, U.: Spurwechselvorgänge auf zweispurigen Bab-Richtungsfahrbahnen. In: Forschung Straßenbau und Straßenverkehrstechnik. Bundesminister für Verkehr, Bonn-Bad Godesberg (1978)

    Google Scholar 

  46. Spohn, H.: Large scale dynamics of interacting particles. Springer, Berlin (1991)

    MATH  Google Scholar 

  47. Vlachos, D.G., Katsoulakis, M.A.: Derivation and validation of mesoscopic theories for diffusion of interacting molecules. Phys. Rev. Lett. 85(18), 3898 (2000)

    Article  ADS  Google Scholar 

  48. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. Part II I, 325 (1952)

    Google Scholar 

  49. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  50. Wiedemann, R.: Simulation des Straßenverkehrsflusses. Schriftenreihe des Instituts für verkenhrswesen der Universität Karlsruhe, vol. 8, Germany (1974)

  51. Wright, P.H., Dixon, K.: Highway Engineering, 7th edn. New Jersey (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Sopasakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alperovich, T., Sopasakis, A. Stochastic Description of Traffic Flow. J Stat Phys 133, 1083–1105 (2008). https://doi.org/10.1007/s10955-008-9652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9652-6

Keywords

Navigation