Skip to main content
Log in

Large Deviations in the Superstable Weakly Imperfect Bose-Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Superstable Weakly Imperfect Bose-Gas (Sup-WIBG) was originally proposed to solve some inconsistencies of the Bogoliubov theory based on the WIBG. The grand-canonical thermodynamics of the Sup-WIBG has been recently studied in details but only out of the point of the (first order) phase transition. The present paper closes this gap. The key technical tools are the Large Deviations (LD) formalism and in particular the analysis of the Kac distribution function. It turns out that the condensate fraction discontinuity as a function of the chemical potential (that occurs at the phase transition point) disappears if one considers it as a function of the total particle density. We prove that at this point the equilibrium state of the Sup-WIBG is a mixture of two (low- and high-density) pure phases related to two critical particle densities. Non-zero Bose-Einstein condensate starts at the smaller critical density and continuously grows (for a constant chemical potential) until the second critical density. For higher particle densities, the Bose condensate fraction as well as the chemical potential both increase monotonously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, J.T., Pulé, J.V., Zagrebnov, V.A.: The large deviation principle for the Kac distribution. Helv. Phys. Acta 61, 1063–1078 (1988)

    MathSciNet  Google Scholar 

  2. Lebowitz, J.L., Lenci, M., Spohn, H.: Large deviations for ideal quantum systems. J. Math. Phys. 41, 1224–1243 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Gallavotti, G., Lebowitz, J.L., Mastropietro, V.: Large deviations in rarefied quantum gases. J. Stat. Phys. 108(5–6), 831–861 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Angelescu, N., Verbeure, A., Zagrebnov, V.A.: On Bogoliubov’s model of superfluidity. J. Phys. A Math. Gen. 25, 3473–3491 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bru, J.-B., Zagrebnov, V.A.: On condensations in the Bogoliubov Weakly Imperfect Bose-Gas. J. Stat. Phys. 99, 1297 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zagrebnov, V.A., Bru, J.-B.: The Bogoliubov model of Weakly Imperfect Bose Gas. Phys. Rep. 350, 291–434 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Angelescu, N., Verbeure, A., Zagrebnov, V.A.: Superfluidity III. J. Phys. A Math. Gen. 30, 4895–4913 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Adams, S., Bru, J.-B.: Critical analysis of the Bogoliubov theory of superfluidity. Physica A 332, 60–78 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Adams, S., Bru, J.-B.: Exact solution of the AVZ-Hamiltonian in the grand canonical ensemble. Ann. Henri Poincaré 5, 405–434 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Adams, S., Bru, J.-B.: A new microscopic theory of superfluidity at all temperatures. Ann. Henri Poincaré 5, 435–476 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Bru, J.-B.: Beyond the dilute Bose gas. Physica A 359, 306–344 (2006)

    Article  ADS  Google Scholar 

  12. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. (Mosc.) 11, 23–32 (1947)

    Google Scholar 

  13. Brattelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. II, 2nd edn. Springer, New York (1996)

    Google Scholar 

  14. Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, New York (1969)

    MATH  Google Scholar 

  15. Ginibre, J.: On the asymptotic exactness of the Bogoliubov approximation for many Bosons systems. Commun. Math. Phys. 8, 26–51 (1968)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Lieb, E.H., Seiringer, R., Yngvason, J.: Justification of c-number substitutions in Bosonic Hamiltonians. Phys. Rev. Lett. 94, 080401 (2005)

    Article  ADS  Google Scholar 

  17. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Functional Analysis, vol. I. Academic Press, New York (1972)

    MATH  Google Scholar 

  18. Simon, B.: The Statistical Mechanics of Lattice Gases, vol. I. Princeton Univ. Press, Princeton (1993)

    MATH  Google Scholar 

  19. Minlos, R.A., Povzner, A.Ja.: Thermodynamic limit for entropy. Trans. Mosc. Math. Soc. 17, 269 (1967)

    Google Scholar 

  20. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-B. Bru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bru, JB., Zagrebnov, V.A. Large Deviations in the Superstable Weakly Imperfect Bose-Gas. J Stat Phys 133, 379–400 (2008). https://doi.org/10.1007/s10955-008-9593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9593-0

Keywords

Navigation