Skip to main content
Log in

Normal Transport Properties in a Metastable Stationary State for a Classical Particle Coupled to a Non-Ohmic Bath

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the Hamiltonian motion of an ensemble of unconfined classical particles driven by an external field F through a translationally-invariant, thermal array of monochromatic Einstein oscillators. The system does not sustain a stationary state, because the oscillators cannot effectively absorb the energy of high speed particles. We nonetheless show that the system has at all positive temperatures a well-defined low-field mobility μ over macroscopic time scales of order exp (c/F), during which it finds itself in a metastable stationary state. The mobility is independent of F at low fields, and related to the zero-field diffusion constant D through the Einstein relation. The system therefore exhibits normal transport even though the bath obviously has a discrete frequency spectrum (it is simply monochromatic) and is therefore highly non-Ohmic. Such features are usually associated with anomalous transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allinger, J., Weiss, U.: Non-universality of dephasing in quantum transport. Z. Phys. B 98, 289–296 (1995)

    Article  ADS  Google Scholar 

  2. Bruneau, L., De Bièvre, S.: A Hamiltonian model for linear friction in a homogeneous medium. Commun. Math. Phys. 229, 511 (2002). See also Sect. 6 in mp_arc 01-275

    Article  MATH  ADS  Google Scholar 

  3. Caldeira, A.O., Leggett, A.J.: Quantum tunnelling in a dissipative system. Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  4. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  5. Castella, F., Erdös, L., Frommlet, F., Markowich, P.A.: Fokker-Planck equations as scaling limits of reversible quantum systems. J. Stat. Phys. 100, 543 (2000)

    Article  MATH  Google Scholar 

  6. Chernov, N.I., Eyink, G.L., Lebowitz, J.L., Sinai, Ya.G.: Steady-state electrical conduction in the periodic Lorentz gas. Commun. Math. Phys. 154, 569 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Chernov, N.I., Eyink, G.L., Lebowitz, J.L., Sinai, Ya.G.: Derivation of Ohm’s law in a deterministic mechanical model. Phys. Rev. Lett. 70, 2209 (1993)

    Article  ADS  Google Scholar 

  8. Cohen, D.: Quantum dissipation versus classical dissipation for generalized Brownian motion. Phys. Rev. Lett. 78(15), 2878–2881

  9. Cohen, D.: Unified Model for the study of diffusion localization and dissipation. Phys. Rev. E 55(2), 1422–1441 (1997)

    Article  ADS  Google Scholar 

  10. De Bièvre, S., Parris, P., Silvius, A.: Chaotic dynamics of a free particle interacting with a harmonic oscillator. Physica D 208, 96–114 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. De Bièvre, S., Lafitte, P., Parris, P.: Normal transport at positive temperatures in classical Hamiltonian systems. In: Proceedings of Transport and Spectral Problems in Quantum Mechanics, Cergy-Pontoise, September 2006. Contemporary Mathematics, Vol. 447, p. 57 (2007)

  12. de Smedt, P., Dürr, D., Lebowitz, J.L., Liverani, C.: Quantum system in contact with a thermal environment: rigorous treatment of a simple model. Commun. Math. Phys. 120, 195 (1988)

    Article  MATH  ADS  Google Scholar 

  13. Eckmann, J.P., Young, L.S.: Nonequilibrium energy profiles for a class of 1-D models. Commun. Math. Phys. 262, 237 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6, 504 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Grabert, H., Schramm, P., Ingold, G.-L.: Quantum Brownian motion: the functional integral approach. Phys. Rep. 168(3), 115–207 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. Haki, V., Ambegaokar, V.: Quantum theory of a free particle interacting with a linearly dissipative environment. Phys. Rev. A 32, 423 (1985)

    Article  ADS  Google Scholar 

  17. Holstein, T.: Studies of polaron motion, part 1: the molecular-crystal model. Ann. Phys. (N.Y.) 281, 706 (1959)

    Article  ADS  Google Scholar 

  18. Jaksic, V., Pillet, C.A.: Ergodic properties of classical dissipative systems, I. Acta Math. 181, 245 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kubo, R., Toda, M., Hashitume, N.: Statistical Physics II. Springer, Berlin (1998)

    MATH  Google Scholar 

  20. Larralde, H., Leyvraz, F., Mejia-Monasterio, C.: Transport properties of a modified Lorentz gas. J. Stat. Phys. 113, 197 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Larralde, H., Leyvraz, F., Mejia-Monasterio, C.: Coupled normal heat and matter transport in a simple model system. Phys. Rev. Lett. 86, 5417 (2001)

    Article  ADS  Google Scholar 

  22. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  23. Morgado, R., Oliveira, F., Batrouni, C., Hansen, A.: Relation between anomalous and normal diffusion in systems with memory. Phys. Rev. Lett. 89, 100601 (2002)

    Article  ADS  Google Scholar 

  24. Schramm, P., Grabert, H.: Low-temperature and long-time anomalies of a damped quantum particle. J. Stat. Phys. 49, 767 (1987)

    Article  ADS  Google Scholar 

  25. Silvius, A.A., Parris, P.E., De Bièvre, S.: Adiabatic-nonadiabatic transition in the diffusive Hamiltonian dynamics of a classical Holstein polaron. Phys. Rev. B 73, 014304 (2006)

    Article  ADS  Google Scholar 

  26. Ziman, M.: Electrons and Phonons. Clarendon, Oxford (1962)

    Google Scholar 

  27. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. De Bièvre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafitte, P., Parris, P.E. & De Bièvre, S. Normal Transport Properties in a Metastable Stationary State for a Classical Particle Coupled to a Non-Ohmic Bath. J Stat Phys 132, 863–879 (2008). https://doi.org/10.1007/s10955-008-9590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9590-3

Keywords

Navigation