Skip to main content
Log in

Long Cycles in the Infinite-Range-Hopping Bose-Hubbard Model with Hard Cores

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the relation between long cycles and Bose-Condensation in the Infinite range Bose-Hubbard Model with a hard core interaction. We calculate the density of particles on long cycles in the thermodynamic limit and find that the existence of a non-zero long cycle density coincides with the occurrence of Bose-Einstein condensation but this density is not equal to that of the Bose condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S., Dorlas, T.C.: C -algebraic approach to the Bose-Hubbard model. J. Math. Phys. 48, 103304 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  2. Angelescu, N., Bundaru, M.: A remark on the condensation in the hard-core lattice Bose gas. J. Stat. Phys. 69, 897–903 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bru, J.-B., Dorlas, T.C.: Exact solution of the infinite-range-hopping Bose-Hubbard model. J. Stat. Phys. 113, 177–196 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandler, D., Wolynes, P.G.: Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74, 4078 (1981)

    Article  ADS  Google Scholar 

  5. Dorlas, T.C., Martin, Ph.A., Pulé, J.V.: Long cycles in a perturbed mean field model of a boson gas. J. Stat. Phys. 121, 433–461 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Feynman, R.P.: Atomic theory of the λ transition in Helium. Phys. Rev. 91, 1291 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Feynman, R.P.: Statistical Mechanics. Benjamin, Elmsford (1974). Chap. 11

    Google Scholar 

  8. Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  9. Kirson, M.W.: Bose-Einstein condensation in an exactly solvable model of strongly interacting bosons. J. Phys. A Math. Gen. A 33, 731 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Manjegani, S.M.: Hölder and Young inequalities for the trace of operators. Positivity 11, 239–250 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martin, Ph.A.: Quantum Mayer graphs: application to Bose and Coulomb gases. Acta Phys. Pol. B 34, 3629 (2003)

    ADS  Google Scholar 

  12. Penrose, O., Onsager, L.: Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576 (1956)

    Article  MATH  ADS  Google Scholar 

  13. Penrose, O.: Bose-Einstein condensation in an exactly soluble system of interacting particles. J. Stat. Phys. 63, 761–781 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  14. Schakel, A.M.J.: Percolation, Bose-Einstein condensation and string proliferation. Phys. Rev. E 63, 126115 (2001)

    Article  ADS  Google Scholar 

  15. Sear, R.P., Cuesta, J.A.: What do emulsification failure and Bose-Einstein condensation have in common? Europhys. Lett. 55, 451 (2001)

    Article  ADS  Google Scholar 

  16. Sütö, A.: Percolation transition in the Bose gas. J. Phys. A Math. Gen. 26, 4689 (1993)

    Article  ADS  Google Scholar 

  17. Sütö, A.: Percolation transition in the Bose gas: II. J. Phys. A Math. Gen. 35, 6995 (2002)

    Article  MATH  ADS  Google Scholar 

  18. Tóth, B.: Phase transition in an interacting Bose system. An application of the theory of Ventsel’ and Freidlin. J. Stat. Phys. 61, 749–764 (1990)

    Article  ADS  Google Scholar 

  19. Ueltschi, D.: Feynman cycles in the Bose gas. J. Math. Phys. 47, 123303 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Ueltschi, D.: The relation between Feynman cycles and off-diagonal long-range order. Phys. Rev. Lett. 97, 170601 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  21. Yang, C.F.: Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Boland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boland, G., Pulé, J.V. Long Cycles in the Infinite-Range-Hopping Bose-Hubbard Model with Hard Cores. J Stat Phys 132, 881–905 (2008). https://doi.org/10.1007/s10955-008-9586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9586-z

Keywords

Navigation