Skip to main content
Log in

LERW as an Example of Off-Critical SLEs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two dimensional loop erased random walk (LERW) is a random curve, whose continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter κ=2. In this article we study “off-critical loop erased random walks”, loop erasures of random walks penalized by their number of steps. On one hand we are able to identify counterparts for some LERW observables in terms of symplectic fermions (c=−2), thus making further steps towards a field theoretic description of LERWs. On the other hand, we show that it is possible to understand the Loewner driving function of the continuum limit of off-critical LERWs, thus providing an example of application of SLE-like techniques to models near their critical point. Such a description is bound to be quite complicated because outside the critical point one has a finite correlation length and therefore no conformal invariance. However, the example here shows the question need not be intractable. We will present the results with emphasis on general features that can be expected to be true in other off-critical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Bernard, D.: Conformal field theories of stochastic Loewner evolutions. Commun. Math. Phys. 239(3), 493–521 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bauer, M., Bernard, D.: SLE, CFT and zig-zag probabilities. In: Proceedings of the Conference ‘Conformal Invariance and Random Spatial Processes’, Edinburgh, July 2003

  3. Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432(3–4), 115–222 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bauer, M., Bernard, D., Houdayer, J.: Dipolar SLEs. J. Stat. Mech. 0503, P001 (2005)

    Google Scholar 

  5. Bauer, M., Bernard, D., Kytölä, K.: Multiple Schramm-Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bauer, M., Bernard, D., Kennedy, T.G.: (2008, in preparation)

  7. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Camia, F., Fontes, L., Newman, C.: The scaling limit geometry of near-critical 2d percolation. J. Stat. Phys. 125(5–6), 1155–1171 (2006). arXiv:cond-mat/0510740

    Article  ADS  MathSciNet  Google Scholar 

  9. Caracciolo, S., Jacobsen, J.L., Saleur, H., Sokal, A.D., Sportiello, A.: Fermionic field theory for trees and forests. Phys. Rev. Lett. 93, 080601 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  11. Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318(1), 81–118 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  13. Kager, W., Nienhuis, B.: A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115(5–6), 1149–1229 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. GTM, vol. 113. Springer, Berlin (1991)

    MATH  Google Scholar 

  15. Kausch, H.-G.: Symplectic Fermions. Nucl. Phys. B 583, 513–541 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Kennedy, T.G.: The Length of an SLE—Monte Carlo Studies. J. Stat. Phys. 128(6), 1263–1277 (2007). arXiv:math/0612609v2

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Kytölä, K.: On conformal field theory of SLE(kappa, rho). J. Stat. Phys. 123(6), 1169–1181 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Kytölä, K.: Virasoro module structure of local martingales of SLE variants. Rev. Math. Phys. 19(5), 455–509 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  20. Lawler, G.F.: Dimension and natural parametrization for SLE curves. arXiv:0712.3263 (2007)

  21. Lawler, G.F., Sheffield, S.: Construction of the natural parametrization for SLE curves (2008, in preparation)

  22. Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565–588 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Amer. Math. Soc. 16(4), 917–955 (2003). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Majumdar, S.: Exact fractal dimension of the loop-erased self-avoiding walk in two dimensions. Phys. Rev. Lett. 68, 2329–2331 (1992)

    Article  ADS  Google Scholar 

  26. Makarov, N., Smirnov, S.: Massive SLEs (2008, in preparation)

  27. Nolin, P., Werner, W.: Asymmetry of near-critical percolation interfaces. arXiv:0710.1470 (2007)

  28. Öksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th ed. Springer Universitext. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  30. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schramm, O., Wilson, D.: SLE coordinate changes. N.Y. J. Math. 11, 659–669 (2005)

    MATH  MathSciNet  Google Scholar 

  32. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C.R. Acad. Sci. Paris 333, 239–244 (2001)

    MATH  Google Scholar 

  33. Werner, W.: Random planar curves and Schramm-Loewner evolutions. In: Lectures on probability theory and statistics. Lecture Notes in Math., vol. 1840, pp. 107–195. Springer, Berlin (0000)

    Google Scholar 

  34. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, 1996, pp. 296–303. ACM, New York (1996)

    Chapter  Google Scholar 

  35. Zhan, D.: The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36(2), 467–529 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Bernard, D. & Kytölä, K. LERW as an Example of Off-Critical SLEs. J Stat Phys 132, 721–754 (2008). https://doi.org/10.1007/s10955-008-9569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9569-0

Keywords

Navigation