Skip to main content
Log in

A Haar-like Construction for the Ornstein Uhlenbeck Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The classical Haar construction of Brownian motion uses a binary tree of triangular wedge-shaped functions. This basis has compactness properties which make it especially suited for certain classes of numerical algorithms. We present a similar basis for the Ornstein-Uhlenbeck process, in which the basis elements approach asymptotically the Haar functions as the index increases, and preserve the following properties of the Haar basis: all basis elements have compact support on an open interval with dyadic rational endpoints; these intervals are nested and become smaller for larger indices of the basis element, and for any dyadic rational, only a finite number of basis elements is nonzero at that number. Thus the expansion in our basis, when evaluated at a dyadic rational, terminates in a finite number of steps. We prove the covariance formulae for our expansion and discuss its statistical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1989)

    MATH  Google Scholar 

  2. Van Kampen: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (2007)

    Google Scholar 

  3. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  4. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, London (1998)

    Google Scholar 

  5. Berg, H.: Random Walks in Biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  6. Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley Series in Probability and Statistics. Wiley, New York (2001)

    Google Scholar 

  7. Siegert, A.J.F.: On the first passage time probability problem. Phys. Rev. 81, 617–623 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Ricciardi, L.M., Sato, S.: First-passage time density and moments of the Ornstein-Uhlenbeck process. J. Appl. Probab. 25, 43 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leblanc, B., Renault, O., Scaillet, O.: A correction note on the first passage time of an Ornstein-Uhlenbeck process to a boundary. Finance Stoch. 4(1), 109–111 (2000)

    Article  MATH  Google Scholar 

  10. Alili, L., Patie, P., Pedersen, J.L.: Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21, 967–980 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte Carlo method for the simulation of first passage times for diffusion processes. Methodol. Comput. Appl. Probab. 3, 215–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bouleau, N., Lepingle, D.: Numerical Methods for Stochastic Processes. Wiley Series in Probability and Statistics. Wiley, New York (1994)

    MATH  Google Scholar 

  13. Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (2004)

    MATH  Google Scholar 

  14. Klauder, J.L., Petersen, W.P.: Numerical integration of multiplicative-noise stochastic differential equations. SIAM J. Numer. Anal. 22, 1153–1166 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fox, R.F.: Second-order algorithm for the numerical integration of colored-noise problems. Phys. Rev. A 46, 2649–2654 (1991)

    Article  ADS  Google Scholar 

  16. Honeycutt, R.L.: Stochastic Runge-Kutta algorithms. I. White noise. Phys. Rev. A 45, 600–603 (1992)

    Article  ADS  Google Scholar 

  17. Cecchi, G.A., Magnasco, M.O.: Negative resistance and rectification in Brownian transport. Phys. Rev. Lett. 76, 1968–1971 (1996)

    Article  ADS  Google Scholar 

  18. Bao, J., Abe, Y., Zhuo, Y.: An integral algorithm for numerical integration of one-dimensional additive colored noise problems. J. Stat. Phys. 90, 1037–1045 (1997)

    Article  ADS  Google Scholar 

  19. Hida, T.: Brownian Motion. Springer, Berlin (1980)

    MATH  Google Scholar 

  20. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, Berlin (2000)

    Google Scholar 

  21. Pyke, R.: The Haar Function Construction of Brownian Motion Indexed by Sets. Springer, Berlin (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Taillefumier.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taillefumier, T., Magnasco, M.O. A Haar-like Construction for the Ornstein Uhlenbeck Process. J Stat Phys 132, 397–415 (2008). https://doi.org/10.1007/s10955-008-9545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9545-8

Keywords

Navigation