Skip to main content
Log in

Random Subcubes as a Toy Model for Constraint Satisfaction Problems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present an exactly solvable random-subcube model inspired by the structure of hard constraint satisfaction and optimization problems. Our model reproduces the structure of the solution space of the random k-satisfiability and k-coloring problems, and undergoes the same phase transitions as these problems. The comparison becomes quantitative in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied. The model is also generalized to define a continuous energy landscape useful for studying several aspects of glassy dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papadimitriou, C.H.: Computational Complexity. Addison–Wesley, Reading (1994)

    MATH  Google Scholar 

  2. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random boolean expression. Science 264, 1297–1301 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  3. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic phase transitions. Nature 400, 133–137 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Biroli, G., Monasson, R., Weigt, M.: A variational description of the ground state structure in random satisfiability problems. Eur. Phys. J. B 14, 551 (2000)

    Article  ADS  Google Scholar 

  5. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002)

    Article  ADS  Google Scholar 

  6. Mézard, M., Zecchina, R.: Random k-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66, 056126 (2002)

    Article  ADS  Google Scholar 

  7. Kschischang, F.R., Frey, B., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborová, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104, 10318 (2007)

    Article  ADS  MATH  Google Scholar 

  9. Mézard, M., Palassini, M., Rivoire, O.: Landscape of solutions in constraint satisfaction problems. Phys. Rev. Lett. 95, 200202 (2005)

    Article  Google Scholar 

  10. Zdeborová, L., Krzakala, F.: Phase transitions in the coloring of random graphs. Phys. Rev. E 76, 031131 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cocco, S., Dubois, O., Mandler, J., Monasson, R.: Rigorous decimation-based construction of ground pure states for spin glass models on random lattices. Phys. Rev. Lett. 90, 047205 (2003)

    Article  ADS  Google Scholar 

  12. Mézard, M., Ricci-Tersenghi, F., Zecchina, R.: Alternative solutions to diluted p-spin models and XORSAT problems. J. Stat. Phys. 111, 505 (2003)

    Article  MATH  Google Scholar 

  13. Mora, T., Mézard, M.: Geometrical organization of solutions to random linear Boolean equations. J. Stat. Mech. Theory Exp. 10, P10007 (2006)

    Article  Google Scholar 

  14. Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217 (2001)

    Article  ADS  Google Scholar 

  15. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Phys. Rev. Lett. 94, 197205 (2005)

    Article  ADS  Google Scholar 

  16. Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 130–139. ACM, New York (2006).

    Chapter  Google Scholar 

  17. Montanari, A., Shah, D.: Counting good truth assignments of random k-sat formulae. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1255–1264. ACM, New York (2007).

    Google Scholar 

  18. Dubois, O., Mandler, J.: The 3-xorsat threshold. In: FOCS, p. 769 (2002).

  19. Derrida, B.: Random-energy model: Limit of a family of disordered models. Phys. Rev. Lett. 45, 79–82 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–655 (1948)

    MathSciNet  Google Scholar 

  21. Montanari, A.: The glassy phase of Gallager codes. Eur. Phys. J. B 23, 121–136 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. Barg, A., Forney, G.D. Jr.: Random codes: minimum distances and error exponents. IEEE Trans. Inf. Theory 48, 2568–2573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Semerjian, G.: On the freezing of variables in random constraint satisfaction problems. J. Stat. Phys. 130, 251 (2008), arXiv.org:0705.2147

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.A.: Replica symmetry breaking and the nature of the spin-glass phase. J. Phys. 45, 843–854 (1984)

    Google Scholar 

  25. Talagrand, M.: Rigorous low temperature results for the p-spin mean field spin glass model. Probab. Theory Relat. Fields 117, 303–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pitman, J., Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25, 855–900 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948)

    Article  Google Scholar 

  28. Gross, D.J., Mézard, M.: The simplest spin glass. Nucl. Phys. B 240, 431 (1984)

    Article  ADS  Google Scholar 

  29. Parisi, G.: Some remarks on the survey decimation algorithm for k-satisfiability. arXiv:cs/0301015 (2003)

  30. Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction problems through belief propagation-guided decimation. arXiv:0709.1667v1 [cs.AI] (2007)

  31. Montanari, A., Semerjian, G.: From large scale rearrangements to mode coupling phenomenology. Phys. Rev. Lett. 94, 247201 (2005)

    Article  ADS  Google Scholar 

  32. Montanari, A., Semerjian, G.: On the dynamics of the glass transition on Bethe lattices. J. Stat. Phys. 124, 103–189 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Montanari, A., Semerjian, G.: Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. McKay, S.R., Berker, A.N., Kirkpatrick, S.: Spin-glass behavior in frustrated Ising models with chaotic renormalization-group trajectories. Phys. Rev. Lett. 48, 767–770 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  35. Bray, A.J., Moore, M.A.: Chaotic nature of the spin-glass phase. Phys. Rev. Lett. 58, 57–60 (1987)

    Article  ADS  Google Scholar 

  36. Krzakala, F., Martin, O.C.: Chaotic temperature dependence in a model of spin glasses. Eur. Phys. J. B 28, 199–208 (2002)

    Article  ADS  Google Scholar 

  37. Cugliandolo, L.F., Kurchan, J.: Analytical solution of the off-equilibrium dynamics of a long-range spin glass model. Phys. Rev. Lett. 71, 173 (1993)

    Article  ADS  Google Scholar 

  38. Gross, D.J., Kanter, I., Sompolinsky, H.: Mean-field theory of the Potts glass. Phys. Rev. Lett. 55(3), 304–307 (1985)

    Article  ADS  Google Scholar 

  39. Biroli, G., Mézard, M.: Lattice glass models. Phys. Rev. Lett. 88, 025501 (2002)

    Article  ADS  Google Scholar 

  40. Krzakala, F., Kurchan, J.: A landscape analysis of constraint satisfaction problems. Phys. Rev. B 76, 021122 (2007)

    ADS  MathSciNet  Google Scholar 

  41. Barrat, J.-L., Feigelman, M.V., Kurchan, J., Dalibard, J.: In: Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter. Les Houches Session LXXVII, 1–26 July, 2002. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Mora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora, T., Zdeborová, L. Random Subcubes as a Toy Model for Constraint Satisfaction Problems. J Stat Phys 131, 1121–1138 (2008). https://doi.org/10.1007/s10955-008-9543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9543-x

Keywords

Navigation