Skip to main content
Log in

Stokesian Dynamics—The BBGKY Hierarchy for Correlation Functions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A statistical description of a system of hard particles immersed in a viscous fluid is introduced and analyzed. Neglecting inertial effects and Brownian motion—i.e. assuming Stokesian dynamics for the particles, hierarchies of equations governing the time evolution of the reduced distribution functions, and for the correlation functions respectively, are derived. It is shown that all non-integrable expressions contained in these equations, stemming from long-range hydrodynamic interactions arising between particles, can be resummed to form physically meaningful fields. Applications of this theoretical scheme are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balescu, R.: Equilibrium and Non-equilibrium Statistical Mechanics. Wiley, New York (1975)

    Google Scholar 

  2. Batchelor, G.K.: Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech. 119, 379 (1982)

    Article  ADS  MATH  Google Scholar 

  3. Batchelor, G.K., Wen, C.: Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. J. Fluid Mech. 124, 495 (1982)

    Article  ADS  MATH  Google Scholar 

  4. Cichocki, B., Sadlej, K.: Steady-state particle distribution of a dilute sedimenting suspension. EuroPhys. Lett. 72, 936 (2005)

    Article  ADS  Google Scholar 

  5. Brenner, M.P., Mucha, P.J.: That sinking feeling. Nature 409, 569 (2001)

    Article  Google Scholar 

  6. Caflisch, R.E., Luke, J.H.C.: Variance in the sedimentation speed of a suspension. Phys. Fluids 28, 759 (1985)

    Article  ADS  MATH  Google Scholar 

  7. Cichocki, B., Ekiel-Jeżewska, M.L., Szymczak, P., Wajnryb, E.: Three-particle contribution to sedimentation and collective diffusion in hard-sphere suspensions. J. Chem. Phys. 117, 1231 (2002)

    Article  ADS  Google Scholar 

  8. Cichocki, B., Felderhof, B.U., Hinsen, K., Wajnryb, E., Awzdziewicz, J.B.: Friction and mobility of many spheres in stokes flow. J. Chem. Phys. 100, 3780 (1994)

    Article  ADS  Google Scholar 

  9. Cichocki, B., Jones, R., Kutteh, R., Wajnryb, E.: Friction and mobility for colloidal spheres in Stokes flow near a boundary: The multipole method and applications. J. Chem. Phys. 112, 2548 (2000)

    Article  ADS  Google Scholar 

  10. Cunha, F.R., Abade, G.C., Sousa, A.J., Hinch, E.J.: Modeling and direct simulation of velocity fluctuations and particle-velocity correlations in sedimentation. J. Fluids Engn. 124, 957 (2002)

    Article  Google Scholar 

  11. Falkenhagen, H.: Theorie der Elektrotyle. S. Hirzel, Leipzig (1971)

    Google Scholar 

  12. Felderhof, B.U., Jones, R.B.: Convective motion and transfer of force by many-body hydrodynamic interactions. Physica A 146, 404 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Glauberman, A.E.: K teorii sistem elektricheski zaryashennykh chastits. Doklady Akad. Nauk S.S.S.R. 78, 883 (1951)

    MATH  Google Scholar 

  14. Glauberman, A.E., Yukhnovskii, I.P.: K statisticheskoi teorii kontsentrirovannykh rastvorov sil’nykh elektolitov. i, ii. Zhur. Eksptl. Teoret. Fiz. 22, 562 (1952)

    Google Scholar 

  15. Glauberman, A.E., Yukhnovskii, I.P.: Binarnaya funktsiya raspredeleniya dlya sistem vzaimodeistvuyshikh zaryashennikh chastits. i. Zhur. Eksptl. Teoret. Fiz. 27, 690 (1954)

    Google Scholar 

  16. Guazzelli, E.: Evolution of particle-velocity correlations in sedimentation. Phys. Fluids 13, 1537 (2001)

    Article  ADS  Google Scholar 

  17. Huang, K.: Statistical Mechanics. Wiley, New York (1987)

    MATH  Google Scholar 

  18. Janosi, I.M., Tel, T., Wolf, D.E., Gallas, J.A.C.: Chaotic particle dynamics in viscous flows: The three-particle stokeslet problem. Phys. Rev. E 56, 2858 (1997)

    Article  ADS  Google Scholar 

  19. Kim, S., Karilla, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover Publications, Inc., Mineola (2005)

    Google Scholar 

  20. Koch, D.L., Shaqfeh, E.S.G.: Screening in sedimenting suspensions. J. Fluid Mech. 224, 275 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ladd, A.J.C., Nguyen, N.Q.: Microstructure in a settling suspension of hard spheres. Phys. Rev. E 69, 050,401 (2004)

    Google Scholar 

  22. Ladd, A.J.C., Nguyen, N.Q.: Sedimentation of hard-sphere suspensions at low reynolds number. J. Fluid Mech. 525, 73 (2005)

    Article  ADS  MATH  Google Scholar 

  23. Mazur, P., Bedeaux, D.: Generaization of faxen’s theorem to nosteady motion of a sphere through an incompressible fluid in arbitrary flow. Physica 76, 235 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  24. Mazur, P., van Saarlos, W.: Many-sphere hydrodynamic interactions and mobilities in a suspension. Physica A 115, 21 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mucha, P.J., Brenner, M.P.: Diffusivities and front propagation in sedimentation. Phys. Fluids 15, 1305 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Segré, P.N., Herbolzheimer, E., Chaikin, P.M.: Long-range correlations in sedimentation. Phys. Rev. Lett. 79, 2574 (1997)

    Article  ADS  Google Scholar 

  27. Szymczak, P., Cichocki, B.: Memory effects in collective dynamics of brownian suspensions. J. Chem. Phys. 121, 3329 (2004)

    Article  ADS  Google Scholar 

  28. Szymczak, P., Cichocki, B.: Diagrammatic approach to response problems in composite systems. J. Stat. Mech. (2008). P01025

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Sadlej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cichocki, B., Sadlej, K. Stokesian Dynamics—The BBGKY Hierarchy for Correlation Functions. J Stat Phys 132, 129–151 (2008). https://doi.org/10.1007/s10955-008-9542-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9542-y

Keywords

Navigation