Skip to main content
Log in

Construction of Discrete Kinetic Models with Given Invariants

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the general problem of the construction of discrete kinetic models (DKMs) with given conservation laws. This problem was first stated by Gatignol in connection with discrete models of the Boltzmann equation (BE) and it has been addressed in the last decade by several authors. Even though a practical criterion for the non-existence of spurious conservation laws has been devised, and a method for enlarging existing physical models by new velocity points without adding non-physical invariants has been proposed, a general algorithm for the construction of all normal (physical) discrete models with assigned conservation laws, in any dimension and for any number of points, is still lacking in the literature. We introduce the most general class of discrete kinetic models and obtain a general method for the construction and classification of normal DKMs. In particular, it is proved that for any given dimension d≥2 and for any sufficiently large number N of velocities (for example, N≥6 for the planar case d=2) there exists just a finite number of distinct classes of DKMs. We apply the general method in the particular cases of discrete velocity models (DVMs) of the inelastic BE and elastic BE. Using our general approach to DKMs and our results on normal DVMs for a single gas, we develop a method for the construction of the most natural (from physical point of view) subclass of normal DVMs for binary gas mixtures. We call such models supernormal models (SNMs) (they have the property that by isolating the velocities of single gases involved in the mixture, we also obtain normal DVMs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd, L.: On the Boltzmann equation, part II: the full initial value problem. Arch. Ration. Mech. Anal. 45, 17–34 (1972)

    MathSciNet  MATH  Google Scholar 

  2. Arkeryd, L., Cercignani, C.: On a functional equation arising in the kinetic theory of gases. Rend. Mat. Acc. Lincei 1, 139–149 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Bobylev, A., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I Math. 320, 639–644 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bobylev, A.V., Cercignani, C.: Discrete velocity models for mixtures. J. Stat. Phys. 91, 327–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V., Cercignani, C.: Discrete velocity models without non-physical invariants. J. Stat. Phys. 97, 677–686 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabannes, H.: The discrete Boltzmann equation. Lecture notes given at the University of California at Berkeley (1980), revised jointly with R. Gatignol and L.-S. Luo, 2003

  7. Carleman, T.: Problème Mathématiques dans la Théorie Cinétique des Gaz. Almqvist-Wiksell, Uppsala (1957)

    Google Scholar 

  8. Cercignani, C.: Sur des critère d’existence globale en théorie cinétique discrète. C. R. Acad. Sci. Paris 301, 89–92 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Cercignani, C., Cornille, H.: Shock waves for discrete velocity gas mixture. J. Stat. Phys. 99, 115–140 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cercignani, C., Cornille, H.: Large size planar discrete velocity models for gas mixtures. J. Phys. A: Math. Gen. 34, 2985–2998 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cornille, H., Cercignani, C.: A class of planar discrete velocity models for gas mixtures. J. Stat. Phys. 99, 967–991 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cornille, H., Cercignani, C.: On a class of planar discrete velocity models for gas mixtures. In: Ciancio, V., Donato, A., Oliveri, F., Rionero, S. (eds.) Proceedings “WASCOM-99” 10th Conference on Waves and Stability in Continuous Media. World Scientific, Singapore (2001)

    Google Scholar 

  13. Gatignol, R.: Théorie Cinétique des Gaz à Répartition Discrète de Vitesses. Springer, New York (1975)

    Google Scholar 

  14. Palczewski, A., Schneider, J., Bobylev, A.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34, 1865–1883 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Platkowski, T., Illner, R.: Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev. 30, 213–255 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vedenyapin, V.V.: Velocity inductive construction for mixtures. Transport. Theory Stat. Phys. 28, 727–742 (1999)

    Article  MATH  Google Scholar 

  17. Vedenyapin, V.V., Orlov, Yu.N.: Conservation laws for polynomial Hamiltonians and for discrete models for Boltzmann equation. Teor. Math. Phys. 121, 1516–1523 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bobylev, A.V., Vinerean, M.C.: Construction and classification of discrete kinetic models without spurious invariants. Riv. Mat. Univ. Parma 7, 1–80 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Vinerean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, A.V., Vinerean, M.C. Construction of Discrete Kinetic Models with Given Invariants. J Stat Phys 132, 153–170 (2008). https://doi.org/10.1007/s10955-008-9536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9536-9

Keywords

Navigation