Skip to main content
Log in

Computing the Loewner Driving Process of Random Curves in the Half Plane

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We simulate several models of random curves in the half plane and numerically compute the stochastic driving processes that produce the curves through the Loewner equation. Our models include models whose scaling limit is the Schramm-Loewner evolution (SLE) and models for which it is not. We study several tests of whether the driving process is Brownian motion, as it is for SLE. We find that testing only the normality of the process at a fixed time is not effective at determining if the random curves are an SLE. Tests that involve the independence of the increments of Brownian motion are much more effective. We also study the zipper algorithm for numerically computing the driving function of a simple curve. We give an implementation of this algorithm which runs in a time O(N 1.35) rather than the usual O(N 2), where N is the number of points on the curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amoruso, C., Hartman, A.K., Hastings, M.B., Moore, M.A.: Conformal invariance and SLE in two-dimensional Ising spin glasses. Phys. Rev. Lett. 97, 267202 (2006). Archived as arXiv:cond-mat/0601711

    Article  ADS  Google Scholar 

  2. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Conformal invariance in two-dimensional turbulence. Nat. Phys. 2, 124 (2006). Archived as arXiv:nlin.CD/0602017

    Article  Google Scholar 

  3. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Inverse turbulent cascades and conformally invariant curves. Archived as arXiv:nlin.CD/0609069

  4. Bernard, D., Le Doussal, P., Middleton, A.A.: Are domain walls in 2D spin glasses described by stochastic Loewner evolutions? Phys. Rev. B 76, 020403(R) (2007). Archived as arXiv:cond-mat/0611433

    Article  ADS  Google Scholar 

  5. Camia, F., Newman, C.M.: Critical percolation exploration path and SLE(6): a proof of convergence Probab. Theory Relat. Fields 139, 473–519 (2007). Archived as arXiv:math.PR/0604487

    Article  MathSciNet  MATH  Google Scholar 

  6. Kennedy, T.: A fast algorithm for simulating the chordal Schramm-Loewner evolution. J. Stat. Phys. 128, 1125–1137 (2007). Archived as arXiv:math.PR/0508002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kennedy, T.: A faster implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 106, 407–429 (2002). Archived as arXiv:cond-mat/0109308

    Article  MATH  Google Scholar 

  8. Kühnau, R.: Numerische Realisierung konformer Abbildungen durch “Interpolation”. Z. Angew. Math. Mech. 63, 631–637 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lawler, G.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  10. Lawler, G., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: a Jubilee of Benoit Mandelbrot, Part 2. Proc. Sympos. Pure Math., vol. 72, pp. 339–364. Am. Math. Soc., Providence (2004). Archived as arXiv:math.PR/0204277

    Google Scholar 

  11. Lawler, G., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004). Archived as arXiv:math.PR/0112234

    Article  MathSciNet  MATH  Google Scholar 

  12. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  13. Marshall, D.E., Rohde, S.: Convergence of a variant of the zipper algorithm for conformal mapping, SIAM J. Numer. Anal. 45, 2577–2609 (2007)

    Article  MathSciNet  Google Scholar 

  14. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000). Archived as arXiv:math.PR/9904022

    Article  MathSciNet  MATH  Google Scholar 

  15. Smirnov, S.: Critical percolation in the plane. C. R. Acad. Sci. Paris Sér. I Math. 333, 239 (2001)

    MATH  Google Scholar 

  16. Smirnov, S.: Towards conformal invariance of 2D lattice models. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 1421–1451. Eur. Math. Soc., Zurich (2006). Archived as arXiv:0708.0032v1 [math-ph]

    Google Scholar 

  17. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Preprint. Archived as arXiv:math.PR/0605337

  18. Tsai, J.: The Loewner driving function of trajectory arcs of quadratic differentials. Preprint. Archived as arXiv:0704.1933v2 [math.CV]

  19. Zhan, D.: The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36, 467–529 (2008). Archived as arXiv:math.PR/0610304

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, T. Computing the Loewner Driving Process of Random Curves in the Half Plane. J Stat Phys 131, 803–819 (2008). https://doi.org/10.1007/s10955-008-9535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9535-x

Keywords

Navigation