Skip to main content
Log in

Thermodynamical Approach to the Longest Common Subsequence Problem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce an interacting particle model in a random media and show that this particle process is equivalent to the Longest Common Subsequence (LCS) problem of two binary sequences. We derive a differential equation which links the mean LCS-curve to the average speed of the particles given their density and prove that the average speed of the particles and density converges uniformly on every scale which is somewhat larger than  \(\sqrt{n}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Diaconis, P.: Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Relat. Fields 103, 199–213 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexander, K.S.: The rate of convergence of the mean length of the longest common subsequence. Ann. Appl. Probab. 4(4), 1074–1082 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amsalu, S., Matzinger, H., Popov, S.: Lower bounds for the probability of macroscopical non-unique alignments. ESAIM Probab. Stat. 11, 281–300 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arratia, R., Waterman, M.S.: A phase transition for the score in matching random sequences allowing deletions. Ann. Appl. Probab. 4(1), 200–225 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baeza-Yates, R.A., Gavaldà, R., Navarro, G., Scheihing, R.: Bounding the expected length of longest common subsequences and forests. Theory Comput. Syst. 32(4), 435–452 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chvatal, V., Sankoff, D.: Longest common subsequences of two random sequences. J. Appl. Probab. 12, 306–315 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dančík, V., Paterson, M.: Upper bounds for the expected length of a longest common subsequence of two binary sequences. Random Struct. Algorithms 6(4), 449–458 (1995)

    Article  MATH  Google Scholar 

  8. Deken, J.G.: Some limit results for longest common subsequences. Discrete Math. 26(1), 17–31 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Durringer, C., Hauser, R., Matzinger, H.: Approximation to the mean curve in the LCS problem. Stoch. Process. Their Appl. 118(4), 629–648 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hauser, R., Matzinger, H., Martinez, S.: Large deviation based upper bounds for the lcs-problem. Adv. Appl. Probab. 38(3), 827–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Houdre, C., Lember, J., Matzinger, H.: On the longest common increasing binary subsequence. C.R. Acad. Sci. Paris Ser. I 343, 589–594 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Kiwi, M., Loebl, M., Matousek, J.: Expected length of the longest common subsequence for large alphabets. Adv. Math. 197(2), 480–498 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lember, J., Matzinger, H.: Standard deviation of the longest common subsequence (2006, submitted)

  14. Lember, J., Matzinger, H., Durringer, C.: Deviation from the mean in sequence comparison when one sequence is periodic. Lat. Am. J. Probab. Math. III (2007)

  15. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics, pp. 148–188. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  16. Menshikov, M.V., Popov, S.Yu., Sisko, V.: On the connection between oriented percolation and contact process. J. Theor. Probab. 15(1), 207–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paterson, M., Dančík, V.: Longest common subsequences. In: Mathematical Foundations of Computer Science 1994 (Košice, 1994). Lecture Notes in Comput. Sci., vol. 841, pp. 127–142. Springer, Berlin (1994)

    Google Scholar 

  18. Seppäläinen, T.: Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26(3), 1232–1250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seppäläinen, T.: Large deviations for increasing sequences on the plane. Probab. Theory Relat. Fields 112, 221–251 (1998)

    Article  MATH  Google Scholar 

  20. Steele, M.J.: An Efron-Stein inequality for non-symmetric statistics. Ann. Stat. 14, 753–758 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Waterman, M.S.: General methods of sequence comparison. Bull. Math. Biol. 46(4), 473–500 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Waterman, M.S.: Estimating statistical significance of sequence alignments. Philos. Trans. R. Soc. Lond. B 344, 383–390 (1994)

    Article  ADS  Google Scholar 

  23. Waterman, M.S.: Introduction to Computational Biology. Chapman & Hall, London (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Vachkovskaia.

Additional information

All three authors are grateful to SFB 701. M.V. is grateful to CNPq (304561/2006–1 and 471925/2006–3) and FAPESP (thematic grant 04/07276–2) for partial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amsalu, S., Matzinger, H. & Vachkovskaia, M. Thermodynamical Approach to the Longest Common Subsequence Problem. J Stat Phys 131, 1103–1120 (2008). https://doi.org/10.1007/s10955-008-9533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9533-z

Keywords

Navigation