Skip to main content
Log in

Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is known that the moments of the maximum value of a one-dimensional conditional Brownian motion, the three-dimensional Bessel bridge with duration 1 started from the origin, are expressed using the Riemann zeta function. We consider a system of two Bessel bridges, in which noncolliding condition is imposed. We show that the moments of the maximum value is then expressed using the double Dirichlet series, or using the integrals of products of the Jacobi theta functions and its derivatives. Since the present system will be provided as a diffusion scaling limit of a version of vicious walker model, the ensemble of 2-watermelons with a wall, the dominant terms in long-time asymptotics of moments of height of 2-watermelons are completely determined. For the height of 2-watermelons with a wall, the average value was recently studied by Fulmek by a method of enumerative combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altland, A., Zirnbauer, M.R.: Random matrix theory of a chaotic Andreev quantum dot. Phys. Rev. Lett. 76, 3420–3424 (1996)

    Article  ADS  Google Scholar 

  2. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997)

    Article  ADS  Google Scholar 

  3. Arrowsmith, D.K., Mason, P., Essam, J.W.: Vicious walkers, flows and directed percolation. Physica A 177, 267–272 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Biane, P., Pitman, J., Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Am. Math. Soc. 38, 435–465 (2001). arXiv:math.PR/9912170

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonichon, N., Mosbah, M.: Watermelon uniform random generation with applications. Theor. Comput. Sci. 307, 241–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel (2002)

    MATH  Google Scholar 

  7. de Bruijn, N.G., Knuth, D.E., Rice, S.O.: The average height of planted plane trees. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 15–22. Academic Press, San Diego (1972)

    Google Scholar 

  8. Essam, J.W., Guttmann, A.J.: Vicious walkers and directed polymer networks in general dimensions. Phys. Rev. E 52, 5849–5862 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Feierl, T.: The height of watermelons with wall. arXiv:math.CO/0802.2691

  10. Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  MATH  ADS  Google Scholar 

  11. Fulmek, M.: Asymptotics of the average height of 2-watermelons with a wall. Electron. J. Comb. 14, #R64/1-20 (2007). http://www.combinatorics.org/

    MathSciNet  Google Scholar 

  12. Gillet, F.: Asymptotic behaviour of watermelons. arXiv:math.PR/0307204

  13. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  14. Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959)

    MATH  MathSciNet  Google Scholar 

  15. Katori, M., Tanemura, H.: Scaling limit of vicious walks and two-matrix model. Phys. Rev. E 66, 011105/1-12 (2002).

    Article  ADS  Google Scholar 

  16. Katori, M., Tanemura, H.: Functional central limit theorems for vicious walkers. Stoch. Stoch. Rep. 75, 369–390 (2003). arXiv:math.PR/0203286

    MATH  MathSciNet  Google Scholar 

  17. Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45, 3058–3085 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Katori, M., Tanemura, H.: Infinite systems of non-colliding generalized meanders and Riemann-Liouville differintegrals. Probab. Theory Relat. Fields 138, 113–156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Katori, M., Tanemura, H.: Noncolliding Brownian motion and determinantal processes. J. Stat. Phys. 129, 1233–1277 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Krattenthaler, C.: Watermelon configurations with wall interaction: exact and asymptotic results. J. Phys. Conf. Ser. 42, 179–212 (2006)

    Article  ADS  Google Scholar 

  21. Krattenthaler, C., Guttmann, A.J., Viennot, X.G.: Vicious walkers, friendly walkers and Young tableaux II: with a wall. J. Phys. A: Math. Phys. 33, 8835–8866 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Kuijlaars, A.B.J., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights. arXiv:math.CA/0712.1333

  23. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Now York (1998)

    Google Scholar 

  24. Tracy, C.A., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953–979 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yor, M.: Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katori, M., Izumi, M. & Kobayashi, N. Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function. J Stat Phys 131, 1067–1083 (2008). https://doi.org/10.1007/s10955-008-9524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9524-0

Keywords

Navigation