Skip to main content
Log in

Dimer Coverings on the Sierpinski Gasket

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present the number of dimer coverings N d (n) on the Sierpinski gasket SG d (n) at stage n with dimension d equal to two, three, four or five. When the number of vertices, denoted as v(n), of the Sierpinski gasket is an even number, N d (n) is the number of close-packed dimers. When the number of vertices is an odd number, no close-packed configurations are possible and we allow one of the outmost vertices uncovered. The entropy of absorption of diatomic molecules per site, defined as \(S_{\mathit{SG}_{d}}=\lim_{n\to\infty}\ln N_{d}(n)/v(n)\) , is calculated to be ln (2)/3 exactly for SG 2. The numbers of dimers on the generalized Sierpinski gasket SG d,b (n) with d=2 and b=3,4,5 are also obtained exactly with entropies equal to ln (6)/7, ln (28)/12, ln (200)/18, respectively. The number of dimer coverings for SG 3 is given by an exact product expression, such that its entropy is given by an exact summation expression. The upper and lower bounds for the entropy are derived in terms of the results at a certain stage for SG d (n) with d=3,4,5. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of \(S_{\mathit{SG}_{d}}\) with d=3,4,5 can be evaluated with more than a hundred significant figures accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fowler, R.H., Rushbrooke, G.S.: An attempt to extend the statistical theory of perfect solutions. Trans. Faraday Soc. 33, 1272–1294 (1937)

    Article  Google Scholar 

  2. Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  Google Scholar 

  3. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—An exact result. Philos. Mag. 6, 1061–1063 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fisher, M.E.: Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  6. Fisher, M.E.: On dimer solution of planar Ising models. J. Math. Phys. 7, 1776–1781 (1966)

    Article  ADS  Google Scholar 

  7. Temperley, H.N.V.: In: McDonough, T.P., Mavron, V.C. (eds.) Combinatorics. London Math. Soc. Lecture Note Series, vol. 13, pp. 202–204. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  8. Wu, F.Y.: Dimers on two-dimensional lattices. Int. J. Mod. Phys. B 20, 5357–5371 (2006)

    Article  MATH  ADS  Google Scholar 

  9. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  10. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, New York (2003)

    MATH  Google Scholar 

  11. Dhar, D.: Lattices of effectively nonintegral dimensionality. J. Math. Phys. 18, 577–585 (1977)

    Article  ADS  Google Scholar 

  12. Dhar, D.: Self-avoiding random walks: some exactly soluble cases. J. Math. Phys. 19, 5–11 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Gefen, Y., Mandelbrot, B.B., Aharony, A.: Critical phenomena on fractal lattices. Phys. Rev. Lett. 45, 855–858 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gefen, Y., Aharony, A., Mandelbrot, B.B., Kirkpatrick, S.: Solvable fractal family, and its possible relation to the backbone at percolation. Phys. Rev. Lett. 47, 1771–1774 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  15. Rammal, R., Toulouse, G.: Spectrum of the Schrödinger equation on a self-similar structure. Phys. Rev. Lett. 49, 1194–1197 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  16. Alexander, S.: Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B 27, 1541–1557 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. Domany, E., Alexander, S., Bensimon, D., Kadanoff, L.P.: Solutions to the Schrödinger equation on some fractal lattices. Phys. Rev. B 28, 3110–3123 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gefen, Y., Aharony, A., Mandelbrot, B.B.: Phase transitions on fractals: I. Quasi-linear lattices. J. Phys. A: Math. Gen. 16, 1267–1278 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gefen, Y., Aharony, A., Shapir, Y., Mandelbrot, B.B.: Phase transitions on fractals: II. Sierpinski gaskets. J. Phys. A: Math. Gen. 17, 435–444 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gefen, Y., Aharony, A., Mandelbrot, B.B.: Phase transitions on fractals: III. Infinitely ramified lattices. J. Phys. A: Math. Gen. 17, 1277–1289 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. Guyer, R.A.: Diffusion on the Sierpinski gaskets: a random walker on a fractally structured object. Phys. Rev. A 29, 2751–2755 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hattori, K., Hattori, T., Kusuoka, S.: Self-avoiding paths on the pre-Sierpinski gasket. Probab. Theory Relat. Fields 84, 1–26 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hattori, T., Kusuoka, S.: The exponent for the mean square displacement of self-avoiding random walk on the Sierpinski gasket. Probab. Theory Relat. Fields 93, 273–284 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dhar, D., Dhar, A.: Distribution of sizes of erased loops for loop-erased random walks. Phys. Rev. E 55, R2093–R2096 (1997)

    Article  ADS  Google Scholar 

  25. Daerden, F., Vanderzande, C.: Sandpiles on a Sierpinski gasket. Physica A 256, 533–546 (1998)

    Article  Google Scholar 

  26. Kozak, J.J., Balakrishnan, V.: Analytic expression for the mean time to absorption for a random walker on the Sierpinski gasket. Phys. Rev. E 65, 021105 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kozak, J.J., Balakrishnan, V.: Exact formula for the mean length of a random walk on the Sierpinski gasket. Int. J. Bifurc. Chaos 12, 2379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dhar, D.: Branched polymers on the Given-Mandelbrot family of fractals. Phys. Rev. E 71, 031801 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Chang, S.-C., Chen, L.-C.: Dimer-monomer model on the Sierpinski gasket. Physica A 387, 1551–1566 (2008)

    Article  ADS  Google Scholar 

  30. Tzeng, W.-J., Wu, F.Y.: Dimers on a simple-quartic net with a vacancy. J. Stat. Phys. 110, 671–689 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wu, F.Y.: Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary. Phys. Rev. E 74, 020104 (2006). Wu, F.Y.: Erratum: Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary, Phys. Rev. E 74, 039907 (2006)

    Article  ADS  Google Scholar 

  32. Biggs, N.L.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  33. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    Google Scholar 

  34. Hilfer, R., Blumen, A.: Renormalisation on Sierpinski-type fractals. J. Phys. A: Math. Gen. 17, L537–L545 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  35. Misguich, G., Serban, D., Pasquier, V.: Quantum dimer model with extensive ground-state entropy on the kagome lattice. Phys. Rev. B 67, 214413 (2003)

    Article  ADS  Google Scholar 

  36. Chang, S.-C., Chen, L.-C.: Dimer coverings on the Sierpinski gasket with possible vacancies on the outmost vertices. arXiv:0711.0573 (2007)

  37. Melzak, Z.A.: Companion to Concrete Mathematics. Wiley, New York (1973), p. 65

    MATH  Google Scholar 

  38. Nagle, J.F.: New series-expansion method for the dimer problem. Phys. Rev. 152, 190–197 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chiuan Chang.

Additional information

This paper is written during the Lung-Chi Chen visit to PIMS, University of British Columbia. The author thanks the institute for the hospitality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SC., Chen, LC. Dimer Coverings on the Sierpinski Gasket. J Stat Phys 131, 631–650 (2008). https://doi.org/10.1007/s10955-008-9516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9516-0

Keywords

Navigation