Skip to main content
Log in

The Number of Open Paths in an Oriented ρ-Percolation Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic properties of the number of open paths of length n in an oriented ρ-percolation model. We show that this number is e nα(ρ)(1+o(1)) as n→∞. The exponent α is deterministic, it can be expressed in terms of the free energy of a polymer model, and it can be explicitly computed in some range of the parameters. Moreover, in a restricted range of the parameters, we even show that the number of such paths is n −1/2 We nα(ρ)(1+o(1)) for some nondegenerate random variable W. We build on connections with the model of directed polymers in random environment, and we use techniques and results developed in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biggins, J.: Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, 137–151 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boldrighini, C., Minlos, R.A., Pellegrinotti, A.: Directed polymers up to the L 2 threshold. Markov Processes Relat. Fields 12, 475–508 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Bolthausen, E.: A note on diffusion of directed polymers in a random environment. Commun. Math. Phys. 123, 529–534 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Campanino, M., Ioffe, D.: Ornstein-Zernike theory for the Bernoulli bond percolation on ℤd. Ann. Probab. 30, 652–682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Comets, F., Shiga, T., Yoshida, N.: Directed polymers in random environment: path localization and strong disorder. Bernoulli 9, 705–723 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in a random environment: a review. In: Funaki, T., Osada, H. (eds.) Stochastic Analysis on Large Scale Interacting Systems. Advanced Studies in Pure Mathematics, vol. 39, pp. 115–142 (2004)

  7. Comets, F., Vargas, V.: Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2, 267–277 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Comets, F., Yoshida, N.: Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34, 1746–1770 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications, 2nd edn. Springer, New York (1998)

    Google Scholar 

  10. Dobrushin, R., Nahapetian, B.: Strong convexity of the pressure for lattice systems of classical statistical physics. Teor. Mat. Fiz. 20, 223–234 (1974). (Russian). English translation: Theor. Math. Phys. 20, 782–789 (1974)

    MATH  Google Scholar 

  11. Dobrushin, R., Tirozzi, B.: The central limit theorem and the problem of equivalence of ensembles. Commun. Math. Phys. 54, 173–192 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Durrett, R.: Lecture Notes on Particle Systems and Percolation. Brooks Cole Statistics Probability Series. Wadsworth, Pacific Grove (1988)

    MATH  Google Scholar 

  13. Grimmett, G.: Percolation, 2nd edn. Fundamental Principles of Mathematical Sciences, vol. 321. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Imbrie, J., Spencer, T.: Diffusion of directed polymer in a random environment. J. Stat. Phys. 52, 609–626 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Kesten, H.: Aspects of First Passage Percolation. École d’été de probabilités de Saint-Flour XIV. Lecture Notes in Math., vol. 1180, pp. 125–264. Springer, Berlin (1986)

    Book  Google Scholar 

  16. Kesten, H., Su, Z.: Asymptotic behavior of the critical probability for ρ-percolation in high dimensions. Probab. Theory Relat. Fields 117, 419–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kesten, H., Sidoravicius, V.: A problem in last-passage percolation. Preprint, arXiv.org/abs/0706.3626 (2007)

  18. Kurkova, I.: Local energy statistics in directed polymers. Electron. J. Probab. 13, 5–25 (2008)

    MathSciNet  Google Scholar 

  19. Lee, S.: An inequality for greedy lattice animals. Ann. Appl. Probab. 3, 1170–1188 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Menshikov, M., Zuev, S.: Models of ρ-percolation. In: Kolchin, V.F., et al. (eds.) Petrozavodsk Conference on Probabilistic Methods in Discrete Mathematics. Progr. Pure Appl. Discrete Math., vol. 1, pp. 337–347. VSP, Utrecht (1993)

    Google Scholar 

  21. Petrov, V.: Sums of Independent Random Variables. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. Springer, New York (1975)

    Google Scholar 

  22. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  23. Sinai, Y.: A remark concerning random walks with random potentials. Fundom. Math. 147, 173–180 (1995)

    MATH  MathSciNet  Google Scholar 

  24. Spitzer, F.: Principles of Random Walks. Springer, Berlin (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Comets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comets, F., Popov, S. & Vachkovskaia, M. The Number of Open Paths in an Oriented ρ-Percolation Model. J Stat Phys 131, 357–379 (2008). https://doi.org/10.1007/s10955-008-9506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9506-2

Keywords

Navigation