Skip to main content
Log in

Paretian Poisson Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Many random populations can be modeled as a countable set of points scattered randomly on the positive half-line. The points may represent magnitudes of earthquakes and tornados, masses of stars, market values of public companies, etc. In this article we explore a specific class of random such populations we coin ‘Paretian Poisson processes’. This class is elemental in statistical physics—connecting together, in a deep and fundamental way, diverse issues including: the Poisson distribution of the Law of Small Numbers; Paretian tail statistics; the Fréchet distribution of Extreme Value Theory; the one-sided Lévy distribution of the Central Limit Theorem; scale-invariance, renormalization and fractality; resilience to random perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pareto, V.: Cours d’économie Politique. Droz, Geneva (1896)

    Google Scholar 

  2. Sornette, D.: Critical Phenomena in Natural Sciences. Springer, Berlin (2000)

    MATH  Google Scholar 

  3. Mitzenmacher, M.: Internet Math. 1, 226 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Newman, M.E.J.: Contemp. Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  5. Kingman, J.F.C.: Poisson Processes. Oxford University Press, London (1993)

    MATH  Google Scholar 

  6. Eliazar, I., Klafter, J.: Proc. Nat. Acad. Sci. 102, 13779 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Wolff, R.W.: Stochastic Modeling and the Theory of Qeues. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  8. Embrechts, P., Kluppelberg, C., Mikosch, T.: Modeling Extremal Events for Insurance and Finance. Springer, New York (1997)

    Google Scholar 

  9. Gnedenko, B.: Ann. Math. 44, 423 (1943). Translated and reprinted in: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics I, pp. 195–225. Springer, New York (1992)

    Article  MathSciNet  Google Scholar 

  10. Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)

    MATH  Google Scholar 

  11. Galambos, J.: Asymptotic Theory of Extreme Order Statistics, 2nd edn. Krieger, Melbourne (1987)

    MATH  Google Scholar 

  12. Lévy, P.: Théorie de l’addition des Variables Aléatoires. Gauthier-Villars, Paris (1954)

    MATH  Google Scholar 

  13. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading (1954)

    MATH  Google Scholar 

  14. Ibragimov, I.A., Linnik, Yu.V.: Independent and Stationary Sequences of Random Variables. Noordhoff, Groningen (1971)

    MATH  Google Scholar 

  15. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  16. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn., vol. I. Wiley, New York (1968)

    MATH  Google Scholar 

  17. Resnick, S.: Heavy tailed analysis. Eurandom Report 2005-024, Eurandom, The Netherlands (2005). Available online at http://www.eurandom.tue.nl

  18. Resnick, S.: Heavy Tailed Phenomena: Probabilistic and Statistical Modeling. Springer, New York (2006)

    Google Scholar 

  19. Lorenz, M.O.: Publ. Am. Stat. Assoc. 9, 209 (1905)

    Article  Google Scholar 

  20. Yule, G.: Philos. Trans. R. Soc. Lond. Ser. B 213, 21 (1925)

    Article  ADS  Google Scholar 

  21. Simon, H.A.: Biometrika 42, 425 (1955)

    MATH  MathSciNet  Google Scholar 

  22. Bak, P.: How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York (1996)

    MATH  Google Scholar 

  23. Eliazar, I., Klafter, J.: Physica A 377, 53 (2007)

    Article  ADS  Google Scholar 

  24. Chatterjee, A., Yarlagadda, S., Chakrabarti, B.K. (eds): Econophysics of Wealth Distributions. Springer, Berlin (2005)

    Google Scholar 

  25. Eliazar, I., Klafter, J.: Physica A 386, 318 (2007)

    Article  ADS  Google Scholar 

  26. Eliazar, I., Klafter, J.: On the oligarchic structure of Paretian Poisson processes. Working paper

  27. Eliazar, I.: Probab. Eng. Inf. Sci. 19, 289 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. Chapman and Hall, London (1995)

    MATH  Google Scholar 

  29. Hill, B.M.: Ann. Stat. 3, 1163 (1975)

    Article  MATH  Google Scholar 

  30. Eliazar, I., Klafter, J.: Physica A 383, 171 (2007)

    Article  ADS  Google Scholar 

  31. Goldie, C.M.: Adv. Appl. Probab. 9, 765 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  32. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iddo Eliazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliazar, I., Klafter, J. Paretian Poisson Processes. J Stat Phys 131, 487–504 (2008). https://doi.org/10.1007/s10955-008-9505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9505-3

Keywords

Navigation