Skip to main content
Log in

Response Theory for Equilibrium and Non-Equilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig Relations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubo, R.: Statistical-mechanical theory of irreversible processes. I. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultant Bureau, New York (1974)

    Google Scholar 

  3. Ruelle, D.: General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A 245, 220–224 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Ruelle, D.: Nonequilibrium statistical mechanics near equilibrium: computing higher order terms. Nonlinearity 11, 5–18 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–655 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ruelle, D.: Chaotic Evolution and Strange Attractors. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  7. Ruelle, D.: Differentiation of SRB states. Commun. Math. Phys. 187, 227–241 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Ruelle, D.: Differentiation of SRB states: correction and complements. Commun. Math. Phys. 234, 185–190 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Dolgopyat, D.: On differentiability of SRB states for partially hyperbolic systems. Invent. Math. 155, 389–449 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1, 301–322 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Jiang, M., de la Llave, R.: Linear response function for coupled hyperbolic attractors. Commun. Math. Phys. 261, 379–404 (2006)

    Article  MATH  ADS  Google Scholar 

  12. Ruelle, D.: Application of hyperbolic dynamics to physics: some problems and conjectures. Bull. Am. Math. Soc. 41, 275–278 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ruelle, D.: Differentiating the a.c.i.m. of an interval map with respect to f. Commun. Math. Phys. 258, 445–453 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Baladi, V.: On the susceptibility function of piecewise expanding interval maps. Commun. Math. Phys. 275, 839–859 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Gallavotti, G.: Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem. J. Stat. Phys. 84, 899–926 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Nussenzveig, H.M.: Causality and Dispersion Relations. Academic Press, New York (1972)

    Google Scholar 

  18. Peiponen, K.-E., Vartiainen, E.M., Asakura, T.: Dispersion, Complex Analysis and Optical Spectroscopy. Springer, Heidelberg (1999)

    Google Scholar 

  19. Weber, J.: Fluctuation dissipation theorem. Phys. Rev. 101, 1620–1626 (1956)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Kubo, R.: The fluctuation dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  ADS  Google Scholar 

  21. Lorenz, E.N.: Forced and free variations of weather and climate. J. Atmos. Sci. 36, 1367–1376 (1979)

    Article  ADS  Google Scholar 

  22. Lucarini, V., Bassani, F., Saarinen, J.J., Peiponen, K.-E.: Dispersion theory and sum rules in linear and nonlinear optics. Rivista Nuovo Cimento 26, 1–120 (2003)

    ADS  Google Scholar 

  23. Lucarini, V., Saarinen, J.J., Peiponen, K.-E., Vartiainen, E.: Kramers-Kronig Relations in Optical Materials Research. Springer, Heidelberg (2005)

    Google Scholar 

  24. Peiponen, K.-E.: Sum rules for the nonlinear susceptibilities in the case of sum frequency generation. Phys. Rev. B 35, 4116–4117 (1987)

    Article  ADS  Google Scholar 

  25. Peiponen, K.-E.: Nonlinear susceptibilities as a function of several complex angular-frequency variables. Phys. Rev. B 37, 6463–6467 (1988)

    Article  ADS  Google Scholar 

  26. Bassani, F., Lucarini, V.: General properties of optical harmonic generation from a simple oscillator model. Il Nuovo Cimento D 20, 1117–1125 (1998)

    Article  ADS  Google Scholar 

  27. Young, L.S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5), 733–754 (2002)

    Article  MATH  Google Scholar 

  28. Cessac, B., Sepulchre, J.-A.: Linear response, susceptibility and resonances in chaotic toy models. Physica D 225, 13–28 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Bassani, F., Scandolo, S.: Dispersion relations and sum rules in nonlinear optics. Phys. Rev. B 44, 8446–8453 (1991)

    Article  ADS  Google Scholar 

  30. Peiponen, K.-E., Saarinen, J.J., Svirko, Y.: Derivation of general dispersion relations and sum rules for meromorphic nonlinear optical spectroscopy. Phys. Rev. A 69, 043818 (2004)

    Article  ADS  Google Scholar 

  31. Reick, C.H.: Linear response of the Lorenz system. Phys. Rev. E 66, 036103 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bassani, F., Lucarini, V.: Asymptotic behaviour and general properties of harmonic generation susceptibilities. Eur. Phys. J. B 17, 567–573 (2000)

    Article  ADS  Google Scholar 

  33. Frye, G., Warnock, R.L.: Analysis of partial-wave dispersion relations. Phys. Rev. 130, 478–494 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lucarini, V., Peiponen, K.-E.: Verification of generalized Kramers-Kronig relations and sum rules on experimental data of third harmonic generation susceptibility on polymer. J. Phys. Chem. 119, 620–627 (2003)

    Article  Google Scholar 

  35. Bassani, F., Altarelli, M.: Interaction of radiation with condensed matter. In: Koch, E.E. (ed.) Handbook on Synchrotron Radiation. North–Holland, Amsterdam (1983)

    Google Scholar 

  36. Aspnes, D.E.: The accurate determination of optical properties by ellipsometry. In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids, pp. 89–112. Academic Press, New York (1985)

    Google Scholar 

  37. Peiponen, K.-E., Vartiainen, E.M.: Kramers-Kronig relations in optical data inversion. Phys. Rev. B 44, 8301–8303 (1991)

    Article  ADS  Google Scholar 

  38. King, F.W.: Efficient numerical approach to the evaluation of Kramers-Kronig transforms. J. Opt. Soc. Am. B 19, 2427–2436 (2002)

    Article  ADS  Google Scholar 

  39. Palmer, K.F., Williams, M.Z., Budde, B.A.: Multiply subtractive Kramers-Kronig analysis of optical data. Appl. Opt. 37, 2660–2673 (1998)

    Article  ADS  Google Scholar 

  40. Lucarini, V., Saarinen, J.J., Peiponen, K.-E.: Multiply subtractive generalized Kramers-Kronig relations: application on third-harmonic generation susceptibility on polysilane. J. Chem. Phys. 119, 11095–11098 (2003)

    Article  ADS  Google Scholar 

  41. Leith, C.E.: Climate response and fluctuation dissipation. J. Atmos. Sci. 32, 2022–2026 (1975)

    Article  ADS  Google Scholar 

  42. Lindenberg, K., West, B.J.: Fluctuation and dissipation in a barotropic flow field. J. Atmos. Sci. 41, 3021–3031 (1984)

    Article  ADS  Google Scholar 

  43. Corti, S., Molteni, F., Palmer, T.N.: Signature of recent climate change in frequencies of natural atmospheric circulation regimes, Nature 398, 799–802 (1999)

    Google Scholar 

  44. Lucarini, V., Speranza, A., Vitolo, R.: Parametric smoothness and self-scaling of the statistical properties of a minimal climate model: what beyond the mean field theories? Physica D 234, 105–123 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Lucarini, V.: Towards a definition of climate science. Int. J. Environ. Pollut. 18, 409–414 (2002)

    Article  Google Scholar 

  46. Speranza, A., Lucarini, V.: Environmental science: physical principles and applications. In: Bassani, F., Liedl, J., Wyder, P. (eds.) Encyclopedia of Condensed Matter Physics. Elsevier, Amsterdam (2005)

    Google Scholar 

  47. Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Lucarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucarini, V. Response Theory for Equilibrium and Non-Equilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig Relations. J Stat Phys 131, 543–558 (2008). https://doi.org/10.1007/s10955-008-9498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9498-y

Keywords

Navigation