Skip to main content
Log in

Non-Colliding Paths in the Honeycomb Dimer Model and the Dyson Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we describe a natural family of random non-intersecting discrete paths in the dimer model on the honeycomb lattice. We show that when the dimer model is going to freeze, this family of paths, after a proper rescaling, converges to the extended sine process, obtained traditionally as the limit of the Dyson model when the number of particles goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baik, J., Kriecherbauer, T., McLaughlin, K.D.T.-R., Miller, P.D.: Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results. Int. Math. Res. Not. 821–858 (2003)

  2. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  3. Boutillier, C.: The bead model & limit behaviors of dimer models (2006)

  4. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Ferrari, P.L., Spohn, H.: Step fluctuations for a faceted crystal. J. Stat. Phys. 113, 1–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  MATH  ADS  Google Scholar 

  7. Fowler, R.H., Rushbrooke, G.S.: Statistical theory of perfect solutions. Trans. Faraday Soc. 33, 1272–1294 (1937)

    Article  Google Scholar 

  8. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300–321 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Johansson, K.: The arctic circle boundary and the Airy process. Ann. Probab. 33, 1–30 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Johansson, K., Nordenstam, E.: Eigenvalues of gue minors (2006)

  12. Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959)

    MATH  MathSciNet  Google Scholar 

  13. Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)

    Google Scholar 

  15. Katori, M., Nagao, T., Tanemura, H.: Infinite systems of non-colliding Brownian particles. In: Stochastic Analysis on Large Scale Interacting Systems. Advanced Studies in Pure Mathematics, vol. 39, pp. 283–306. Math. Soc. Japan, Tokyo (2004)

    Google Scholar 

  16. Katori, M., Tanemura, H.: Functional central limit theorems for vicious walkers. Stoch. Stoch. Rep. 75, 369–390 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré Probab. Stat. 33, 591–618 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kenyon, R., Okounkov, A.: What is … a dimer? Not. Am. Math. Soc. 52, 342–343 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. (2) 163, 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mehta, M.L.: Random Matrices. Pure and Applied Mathematics, vol. 142. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  21. Okounkov, A., Reshetikhin, N.: Random skew plane partitions and the Pearcey process (2005)

  22. Okounkov, A., Reshetikhin, N.: The birth of a random matrix (2006)

  23. Sheffield, S.: Random surfaces: large deviations principles and gradient Gibbs measure classifications. PhD thesis, Stanford University (2004)

  24. Spohn, H.: Interacting Brownian particles: a study of Dyson’s model. In: Hydrodynamic Behavior and Interacting Particle Systems. IMA Volumes in Mathematics and Its Applications, vol. 9, pp. 151–179. Springer, New York (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Boutillier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutillier, C. Non-Colliding Paths in the Honeycomb Dimer Model and the Dyson Process. J Stat Phys 129, 1117–1135 (2007). https://doi.org/10.1007/s10955-007-9431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9431-9

Keywords

Navigation