Skip to main content
Log in

Evolution of the Probability Measure for the Majda Model: New Invariant Measures and Breathing PDFs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In 1993, Majda proposed a simple, random shear model from which scalar intermittency was rigorously predicted for the invariant probability measure of passive tracers. In this work, we present an integral formulation for the tracer measure, which leads to a new, comprehensive study on its temporal evolution based on Monte Carlo simulation and direct numerical integration. An interesting, non-monotonic “breathing” phenomenon is discovered from these results and carefully defined, with a solid example for special initial data to predict such phenomenon. The signature of this phenomenon may persist at long time, characterized by the approach of the PDF core to its infinite time, invariant value. We find that this approach may be strongly dependent on the non-dimensional Péclet number, of which the invariant measure itself is independent. Further, the “breathing” PDF is recovered as a new invariant measure in a distinguished time scale in the diffusionless limit. Rigorous asymptotic analysis is also performed to identify the Gaussian core of the invariant measures, and the critical rate at which the heavy, stretched exponential regime propagates towards the tail as a function of time is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonia, R.A., Sreenivasan, K.R.: Log-normality of temperature dissipation in a turbulent boundary layer. Phys. Fluids 20, 1800–1804 (1977)

    Article  ADS  Google Scholar 

  2. Balkovsky, E., Fouxon, A.: Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60(4), 4164–4174 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (2005)

    Google Scholar 

  5. Bourlioux, A., Majda, A.J.: Elementary models with probability distribution function intermittency for passive scalars with a mean gradient. Phys. Fluids 14, 881–897 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bronski, J.C.: Asymptotics of Karhunen–Loeve eigenvalues and tight constants for probability distributions of passive scalar transport. Commun. Math. Phys. 238(3), 563–582 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bronski, J.C., McLaughlin, R.M.: Passive scalar intermittency and the ground state of Schrödinger operators. Phys. Fluids 9, 181–190 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bronski, J.C., McLaughlin, R.M.: Rigorous estimates of the tails of the probability distribution function for the random linear shear model. J. Stat. Phys. 98(3–4), 897–915 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S., Zanetti, G.: Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 1–30 (1989)

    Article  ADS  Google Scholar 

  10. Chertkov, M., Falkovich, G., Kolokolov, I., Lebedev, V.: Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: analytic solution. Phys. Rev. E 51, 5609–5627 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chertkov, M., Kolokolov, G., Vergassola, M.: Inverse cascade and intermittency of passive scalar in one-dimensional smooth flow. Phys. Rev. E 56, 5483–5499 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chertkov, M., Falkovich, G., Kolokolov, I.: Intermittent dissipation of a scalar in turbulence. Phys. Rev. Lett. 80, 2121–2124 (1998)

    Article  ADS  Google Scholar 

  13. Ching, E.S.C.: Probabilities for temperature differences in Rayleigh–Bénard convection. Phys. Rev. A 44, 3622–3629 (1991)

    Article  ADS  Google Scholar 

  14. Holzer, M., Siggia, E.D.: Turbulent mixing of a passive scalar. Phys. Fluids 6, 1820–1837 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Kraichnan, R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  16. Majda, A.J.: The random uniform shear layer: an explicit example of turbulent diffusion with broad tail probability distributions. Phys. Fluids A 5, 1963–1970 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Majda, A.J.: Explicit inertial range renormalization theory in a model for turbulent diffusion. J. Stat. Phys. 73(3–4), 515–542 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Majda, A.J., Kramer, P.: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomenon. Phys. Rep. 314, 237–574 (1999)

    Article  MathSciNet  Google Scholar 

  19. McLaughlin, R.M., Majda, A.J.: An explicit example with non-Gaussian probability distribution for nontrivial scalar mean and fluctuation. Phys. Fluids 8, 536–547 (1996)

    Article  MATH  ADS  Google Scholar 

  20. Pierrehumbert, R.T.: Lattice models of advection-diffusion. Chaos 10, 61–74 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Pumir, A., Shraiman, B.I., Siggia, E.D.: Exponential tails and random advection. Phys. Rev. Lett. 66(23), 2984–2987 (1991)

    Article  ADS  Google Scholar 

  22. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  23. Shraiman, B.I., Siggia, E.D.: Lagrangian path integrals and fluctuations in random flow. Phys. Rev. E 49(23), 2912–2927 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  24. She, Z.S., Orszag, S.A.: Physical model of intermittency in turbulence: Inertial range non-Gaussian statistics. Phys. Rev. Lett. 66, 1701–1704 (1991)

    Article  ADS  Google Scholar 

  25. Sinai, Y.G., Yakhot, V.: Limiting probability distributions of a passive scalar in a random velocity field. Phys. Rev. Lett. 63, 1962–1964 (1989)

    Article  ADS  Google Scholar 

  26. Sparling, L.C., Bacmeister, J.T.: Scale dependence of trace microstructure: Pdfs, intermittency and the dissipation scale. Geophys. Res. Lett. 28, 2823–2826 (2001)

    Article  ADS  Google Scholar 

  27. Thoroddsen, S.T., Van Atta, C.W.: Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech. 244, 547–566 (1992)

    Article  ADS  Google Scholar 

  28. Vanden-Eijnden, E.: Non-Gaussian invariant measures for the Majda model of decaying turbulent transport. Commun. Pure Appl. Math. 54(9), 1146–1167 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camassa, R., Lin, Z. & McLaughlin, R.M. Evolution of the Probability Measure for the Majda Model: New Invariant Measures and Breathing PDFs. J Stat Phys 130, 343–371 (2008). https://doi.org/10.1007/s10955-007-9427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9427-5

Keywords

Navigation