Skip to main content
Log in

No Phase Transition for Gaussian Fields with Bounded Spins

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let a<b, \(\Omega=[a,b]^{{\mathbb{Z}}^{d}}\) and H be the (formal) Hamiltonian defined on Ω by

$$\label{a1}H(\eta)=\frac{1}{2}\sum_{x,y\in {\mathbb{Z}}^{d}}J(x-y)(\eta(x)-\eta(y))^{2},$$
(1)

where J:ℤd→ℝ is any summable non-negative symmetric function (J(x)≥0 for all x∈ℤd, ∑ x J(x)<∞ and J(x)=J(−x)). We prove that there is a unique Gibbs measure on Ω associated to H. The result is a consequence of the fact that the corresponding Gibbs sampler is attractive and has a unique invariant measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bricmont, J., El Mellouki, A., Fröhlich, J.: Random surfaces in statistical mechanics: roughening, rounding, wetting. J. Stat. Phys. 42(5–6), 743–798 (1986)

    Article  Google Scholar 

  2. McBryan, O.A., Spencer, T.: On the decay of correlations in SO(n)-symmetric ferromagnets. Commun. Math. Phys. 53(3), 299–302 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ferrari, P.A., Niederhauser, B.M.: Harness processes and harmonic crystals. Stoch. Process. Appl. 6, 939–956 (2006). math.PR/0312402

    Article  MathSciNet  Google Scholar 

  4. Georgii, H.O.: Gibbs Measures and Phase Transitions. de Gruyer, Berlin (1988)

    MATH  Google Scholar 

  5. Georgii, H.O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. In: Phase Transitions and Critical Phenomena, vol. 18, pp. 1–142. Academic Press, San Diego (2001)

    Chapter  Google Scholar 

  6. Harris, T.E.: Additive set-valued Markov processes and graphical methods. Ann. Probab. 6(3), 355–378 (1978)

    MATH  Google Scholar 

  7. Hsiao, C.-T.: Stochastic processes with Gaussian interaction of components. Z. Wahrscheinlichkeitstheor. Verw. Geb. 59, 39–53 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hsiao, C.-T.: Infinite systems with locally additive interaction of components. Chin. J. Math. 18(2), 83–95 (1985)

    MathSciNet  Google Scholar 

  9. Johnson, N.L., Kotz, S.: Continuous Univariate Distributions, vol. 1. Wiley, New York (1970)

    MATH  Google Scholar 

  10. Lee, D.-S.: Distribution of extremes in the fluctuations of two-dimensional equilibrium interfaces. Phys. Rev. Lett. 95, 150–601 (2005)

    Google Scholar 

  11. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    MATH  Google Scholar 

  12. Sakagawa, H.: Entropic repulsion for the high dimensional Gaussian lattice field between two walls. J. Stat. Phys. 124(5), 1255–1274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000)

    MATH  Google Scholar 

  14. Velenik, Y.: Localization and delocalization of random interfaces. Probab. Surv. 3, 112–169 (2006) (electronic)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, P.A., Grynberg, S.P. No Phase Transition for Gaussian Fields with Bounded Spins. J Stat Phys 130, 195–202 (2008). https://doi.org/10.1007/s10955-007-9423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9423-9

Keywords

Navigation