Skip to main content
Log in

Form Factors of Branch-Point Twist Fields in Quantum Integrable Models and Entanglement Entropy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we compute the leading correction to the bipartite entanglement entropy at large sub-system size, in integrable quantum field theories with diagonal scattering matrices. We find a remarkably universal result, depending only on the particle spectrum of the theory and not on the details of the scattering matrix. We employ the “replica trick” whereby the entropy is obtained as the derivative with respect to n of the trace of the nth power of the reduced density matrix of the sub-system, evaluated at n=1. The main novelty of our work is the introduction of a particular type of twist fields in quantum field theory that are naturally related to branch points in an n-sheeted Riemann surface. Their two-point function directly gives the scaling limit of the trace of the nth power of the reduced density matrix. Taking advantage of integrability, we use the expansion of this two-point function in terms of form factors of the twist fields, in order to evaluate it at large distances in the two-particle approximation. Although this is a well-known technique, the new geometry of the problem implies a modification of the form factor equations satisfied by standard local fields of integrable quantum field theory. We derive the new form factor equations and provide solutions, which we specialize both to the Ising and sinh-Gordon models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karowski, M., Weisz, P.: Exact S matrices and form-factors in (1+1)-dimensional field theoretic models with soliton behavior. Nucl. Phys. B 139, 455–476 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  2. Smirnov, F.: Form factors in completely integrable models of quantum field theory. Adv. Series in Math. Phys., vol. 14. World Scientific, Singapore (1992)

    MATH  Google Scholar 

  3. Essler, F.H.L., Konik, R.M.: Applications of massive integrable quantum field theories to problems in condensed matter physics. In: Shifman, M., Vainshtein, A., Wheater, J. (eds.) From Fields to Strings: Circumnavigating Theoretical Physics. World Scientific, Singapore (2004)

    Google Scholar 

  4. Bennet, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  5. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)

    Article  ADS  Google Scholar 

  6. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalisation of entanglement. Phys. Rev. Lett. 92, 107902 (2004)

    Article  ADS  Google Scholar 

  8. Verstraete, F., Martin-Delgado, M.A., Cirac, J.I.: Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004)

    Article  ADS  Google Scholar 

  9. Audenaert, K., Eisert, J., Plenio, M.B., Werner, R.F.: Entanglement properties of the harmonic chain. Phys. Rev. A 66, 042327 (2002)

    Article  ADS  Google Scholar 

  10. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  11. Latorre, J.I., Rico, E., Vidal, G.: Ground state entanglement in quantum spin chains. Quant. Inf. Comput. 4, 48–92 (2004)

    MathSciNet  Google Scholar 

  12. Latorre, J.I., Lutken, C.A., Rico, E., Vidal, G.: Fine-grained entanglement loss along renormalisation group flows. Phys. Rev. A 71, 034301 (2005)

    Article  ADS  Google Scholar 

  13. Jin, B.-Q., Korepin, V.: Quantum spin chain, Toeplitz determinants and Fisher–Hartwig conjecture. J. Stat. Phys. 116, 79–95 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lambert, N., Emary, C., Brandes, T.: Entanglement and the phase transition in single-mode superradiance. Phys. Rev. Lett. 92, 073602 (2004)

    Article  ADS  Google Scholar 

  15. Casini, H., Huerta, M.: A finite entanglement entropy and the c-theorem. Phys. Lett. B 600, 142–150 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Keating, J.P., Mezzadri, F.: Entanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory. Phys. Rev. Lett. 94, 050501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Weston, R.A.: The entanglement entropy of solvable lattice models. J. Stat. Mech. 0603, L002 (2006)

    Google Scholar 

  18. Calabrese, P., Cardy, J.L.: Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P002 (2004)

    MathSciNet  Google Scholar 

  19. Calabrese, P., Cardy, J.L.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 0504, P010 (2005)

    Google Scholar 

  20. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443–467 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Casini, H., Fosco, C.D., Huerta, M.: Entanglement and alpha entropies for a massive Dirac field in two dimensions. J. Stat. Mech. 0507, P007 (2005)

    Google Scholar 

  22. Casini, H., Huerta, M.: Entanglement and alpha entropies for a massive scalar field in two dimensions. J. Stat. Mech. 0512, P012 (2005)

    Google Scholar 

  23. Yurov, V.P., Zamolodchikov, A.B.: Correlation functions of integrable 2-D models of relativistic field theory. Ising model. Int. J. Mod. Phys. A 6, 3419–3440 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  24. Cardy, J.L., Mussardo, G.: Form-factors of descendent operators in perturbed conformal field theories. Nucl. Phys. B 340, 387–402 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Arafeva, I., Korepin, V.: Scattering in two-dimensional model with Lagrangian L=1/γ(1/2( μ uu)2+m 2(cos u−1)). Pis’ma Zh. Eksp. Teor. Fiz. 20, 680 (1974)

    ADS  Google Scholar 

  26. Vergeles, S., Gryanik, V.: Two-dimensional quantum field theories having exact solutions. Yad. Fiz. 23, 1324–1334 (1976)

    Google Scholar 

  27. Schroer, B., Truong, T., Weisz, P.: Towards an explicit construction of the sine-Gordon theory. Phys. Lett. B 63, 422–424 (1976)

    Article  ADS  Google Scholar 

  28. Arinshtein, A., Fateev, V., Zamolodchikov, A.: Quantum S-matrix of the (1+1)-dimensional Toda chain. Phys. Lett. B 87, 389–392 (1979)

    Article  ADS  Google Scholar 

  29. Mikhailov, A., Olshanetsky, M., Perelomov, A.: Two-dimensional generalized Toda lattice. Commun. Math. Phys. 79, 473–488 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zamolodchikov, A., Zamolodchikov, A.: Factorized S-matrices in two-dimensions as the exact solutions of certain relativistic quantum field models. Ann. Phys. 120, 253–291 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  31. Fring, A., Mussardo, G., Simonetti, P.: Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory. Nucl. Phys. B 393, 413–441 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. Koubek, A., Mussardo, G.: On the operator content of the sinh-Gordon model. Phys. Lett. B 311, 193–201 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  33. Delfino, G., Niccoli, G.: The composite operator \(T\bar{T}\) in sinh-Gordon and a series of massive minimal models. J. High Energy Phys. 05, 035 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lukyanov, S.L.: Free field representation for massive integrable models. Commun. Math. Phys. 167, 183–226 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Brazhnikov, V., Lukyanov, S.: Angular quantization and form factors in massive integrable models. Nucl. Phys. B 512, 616–636 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  36. Delfino, G., Simonetti, P., Cardy, J.L.: Asymptotic factorisation of form factors in two-dimensional quantum field theory. Phys. Lett. B 387, 327–333 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. Rubel, L.A.: Necessary and sufficient conditions for Carlson’s theorem on entire functions. Proc. Natl. Acad. Sci. USA 41(8), 601–603 (1955)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Peschel, I.: On the entanglement entropy for a XY spin chain. J. Stat. Mech. P12005 (2004)

  39. Chung, M.C., Peschel, I.: On density-matrix spectra for two-dimensional quantum systems. Phys. Rev. B 62, 4191–4193 (2000)

    Article  ADS  Google Scholar 

  40. Peschel, I.: Calculation of reduced density matrices from correlation functions. J. Phys. A 36, L205–L208 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Casini, H., Huerta, M.: Analytic results on the geometric entropy for free fields. arXiv:0707.1300 (2007)

  42. Lukyanov, S.L.: Finite temperature expectation values of local fields in the sinh-Gordon model. Nucl. Phys. B 612, 391–412 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Schroer, B., Truong, T.: The order/disorder quantum field operators associated with the two-dimensional Ising model in the continuum limit. Nucl. Phys. B 144, 80–122 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  44. Zamolodchikov, A.: Unpublished

  45. Lukyanov, S., Zamolodchikov, A.: Exact expectation values of local fields in quantum sine-Gordon model. Nucl. Phys. B 493, 571–587 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Castro-Alvaredo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardy, J.L., Castro-Alvaredo, O.A. & Doyon, B. Form Factors of Branch-Point Twist Fields in Quantum Integrable Models and Entanglement Entropy. J Stat Phys 130, 129–168 (2008). https://doi.org/10.1007/s10955-007-9422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9422-x

Keywords

Navigation