Skip to main content
Log in

A Topological Glass

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose and study a model with glassy behavior. The state space of the model is given by all triangulations of a sphere with n nodes, half of which are red and half are blue. Red nodes want to have 5 neighbors while blue ones want 7. Energies of nodes with other numbers of neighbors are supposed to be positive. The dynamics is that of flipping the diagonal of two adjacent triangles, with a temperature dependent probability. We show that this system has an approach to a steady state which is exponentially slow, and show that the stationary state is unordered. We also study the local energy landscape and show that it has the hierarchical structure known from spin glasses. Finally, we show that the evolution can be described as that of a rarefied gas with spontaneous generation of particles and annihilating collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, E., Bouchbinder, E., Hentschel, H.G.E., Ilyin, V., Makedonska, N., Procaccia, I., Schupper, N.: Direct identification of the glass transition: growing length scale and the onset of plasticity. Europhys. Lett. 77, 56002 (2007)

    Article  ADS  Google Scholar 

  2. Aste, T., Sherrington, D.: Glass transition in self-organizing cellular patterns. J. Phys. A 32, 7049–7056 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Ben Arous, G., Černý, J.: Dynamics of trap models. In: Bovier, A., Dunlop, F., van Enter, A., Dalibard, J., (eds.) Mathematical Statistical Physics. Les Houches, session LXXXIII. Elsevier, Amsterdam (2006)

    Google Scholar 

  4. Buhot, A., Garrahan, J.P., Scherrington, D.: Simple strong glass forming models: mean-filed solution with activation. J. Phys. A 36, 307–328 (2003)

    Article  MATH  ADS  Google Scholar 

  5. Collet, P., Eckmann, J.-P.: Dynamics of triangulations. J. Stat. Phys. 121, 1073–1081 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davison, L., Sherrington, D.: Glassy behaviour in a simple topological model. J. Phys. A 33, 8615–8625 (2000)

    Article  MATH  ADS  Google Scholar 

  7. de Bakker, B., Smit, J.: Gravitational binding in 4d dynamical triangulation. Nucl. Phys. B 484, 476–492 (1997)

    Article  MATH  ADS  Google Scholar 

  8. Deng, D., Aragon, A., Yip, S.: Topological features of structural relaxations in a 2-dimensional model atomic glass, I and II. Philos. Trans. R. Soc. Lond. Ser. A—Math. Phys. Eng. Sci. 329, 549 (1989)

    Article  ADS  Google Scholar 

  9. Deng, D., Aragon, A., Yip, S.: Topological features of structural relaxations in a 2-dimensional model atomic glass, I and II. Philos. Trans. R. Soc. Lond. Ser. A—Math. Phys. Eng. Sci. 329, 613 (1989)

    Article  ADS  Google Scholar 

  10. Hentschel, H., Ilyin, V., Makedonska, N., Procaccia, I., Schupper, N.: Statistical mechanics of the glass transition as revealed by a Voronoi tesselation. Phys. Rev. E 75, 050404(R) (2007)

    Article  ADS  Google Scholar 

  11. Kownacki, J.-P.: Freezing of triangulations. Eur. Phys. J. B 38, 485–494 (2004)

    Article  ADS  Google Scholar 

  12. Malyshev, V.A.: Probability related to quantum gravitation: planar gravitation. Uspekhi Mat. Nauk 54, 3–46 (1999)

    MathSciNet  Google Scholar 

  13. Mori, R., Nakamoto, A., Ota, K.: Diagonal flips in Hamiltonian triangulations on the sphere. Graphs Combin. 19, 413–418 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Negami, S.: Diagonal flips of triangulations on surfaces, a survey. In: Proceedings of the 10th Workshop on Topological Graph Theory (Yokohama, 1998), vol. 47 (1999)

  15. Perera, D.N., Harrowell, P.: Stability and structure of a supercooled liquid mixture in two dimensions. Phys. Rev. E 59, 5721–5743 (1999)

    Article  ADS  Google Scholar 

  16. Schliecker, G.: Structure and dynamics of cellular systems. Adv. Phys. 51, 1319–1378 (2002)

    Article  ADS  Google Scholar 

  17. Sherrington, D., Davison, L., Buhot, A., Garraham, J.P.: Glassy behaviour in simple kinetically constrained models: Topological networks, lattice analogues and annihilation diffusion. J. Phys.: Condens. Matter 14, 1673–1682 (2002)

    Article  ADS  Google Scholar 

  18. Tutte, W.T.: A census of planar triangulations. Can. J. Math. 14, 21–38 (1962)

    MATH  MathSciNet  Google Scholar 

  19. van den Berg, J., Kesten, H.: Asymptotic density in a coalescing random walk model. Ann. Probab. 28, 303–352 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wagner, K.: Bemerkungem zum Vierfarbenproblem. Jber. Dtsch. Math. Ver. 46, 126–132 (1936)

    ADS  Google Scholar 

  21. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Eckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckmann, JP. A Topological Glass. J Stat Phys 129, 289–309 (2007). https://doi.org/10.1007/s10955-007-9387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9387-9

Keywords

Navigation