Skip to main content
Log in

Replica Symmetry Breaking Condition Exposed by Random Matrix Calculation of Landscape Complexity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We start with a rather detailed, general discussion of recent results of the replica approach to statistical mechanics of a single classical particle placed in a random N(≫1)-dimensional Gaussian landscape and confined by a spherically symmetric potential suitably growing at infinity. Then we employ random matrix methods to calculate the density of stationary points, as well as minima, of the associated energy surface. This is used to show that for a generic smooth, concave confining potentials the condition of the zero-temperature replica symmetry breaking coincides with one signaling that both mean total number of stationary points in the energy landscape, and the mean number of minima are exponential in N. For such systems the (annealed) complexity of minima vanishes cubically when approaching the critical confinement, whereas the cumulative annealed complexity vanishes quadratically. Different behaviour reported in our earlier short communication (Fyodorov et al. in JETP Lett. 85:261, 2007) was due to non-analyticity of the hard-wall confinement potential. Finally, for the simplest case of parabolic confinement we investigate how the complexity depends on the index of stationary points. In particular, we show that in the vicinity of critical confinement the saddle-points with a positive annealed complexity must be close to minima, as they must have a vanishing fraction of negative eigenvalues in the Hessian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mezard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  2. Parisi, G.: E-preprint arXiv: 0706.0094 [cond-mat.dis-nn] (2007, to appear), in Les Houches Summer School Complex Systems, Eslevier

  3. de Almeida, J.R.L., Thouless, D.J.: J. Phys. A 11, 983 (1978)

    Article  ADS  Google Scholar 

  4. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Philos. Mag. 35, 593 (1977)

    Article  ADS  Google Scholar 

  5. Talagrand, M.: C. R. Acad. Sci. Ser. I: Math. 337, 111 (2003), and Ann. Math. 163, 221 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Talagrand, M.: Probab. Theory Relat. Fields 134, 339 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guerra, F.: Commun. Math. Phys. 233, 1 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Aizenman, M., Sims, R., Starr, S.L.: Mean-field spin glass models from the cavity-ROST perspective. E-preprint arXiv: math-ph/0607060 (2006)

  9. Mezard, M., Parisi, G.: J. Phys. A: Math. Gen. 23, L1229 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. Mezard, M., Parisi, G.: J. Phys. I France 1, 809 (1991)

    Article  Google Scholar 

  11. Mezard, M., Parisi, G.: J. Phys. I France 2, 2231 (1992)

    Article  Google Scholar 

  12. Engel, A.: Nucl. Phys. B 410, 617 (1993)

    Article  ADS  Google Scholar 

  13. Franz, S., Mezard, M.: Physica A 210, 48 (1994)

    Article  ADS  Google Scholar 

  14. Cugliandolo, L.F., Le Doussal, P.: Phys. Rev. E 53, 1525 (1996)

    Article  ADS  Google Scholar 

  15. Fyodorov, Y.V., Sommers, H.-J.: Nucl. Phys. B [FS] 764, 128 (2007), e-preprint arXiv: cond-mat/0610035 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Fyodorov, Y.V., Bouchaud, J.P.: On an explicit construction of Parisi landscapes in finite dimensional Euclidean spaces. E-preprint arXiv: 0706.3776 [cond-mat.dis-nn] (2007)

  17. Derrida, B.: Phys. Rev. B 24, 2613 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. Derrida, B.: J. Phys. Lett. 46, 401 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. Derrida, B., Gardner, E.: J. Phys. C 19, 2253 (1986), and 19, 5783 (1986)

    Article  ADS  Google Scholar 

  20. Derrida, B., Spohn, H.: J. Stat. Phys. 51, 817 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Carpentier, D., Le Doussal, P.: Phys. Rev. E 63, 026110 (2001)

    Article  ADS  Google Scholar 

  22. Balents, L., Bouchaud, J.P., Mezard, M.: J. Phys. I (France) 6, 1007 (1996)

    Article  Google Scholar 

  23. Touya, C., Dean, D.S.: J. Phys. A 40, 919 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Parisi, G.: In: Bovier, A., et al. (eds.) Lecture Notes of the Les Houches Summer School. Elsevier, Amsterdam (2006). E-preprint arXiv: cond-mat/0602349

    Google Scholar 

  25. Aspelmeier, T., Bray, A.J., Moore, M.A.: Phys. Rev. Lett. 92, 087203 (2004)

    Article  ADS  Google Scholar 

  26. Crisanti, A., Leuzzi, L., Parisi, G., Rizzo, T.: Phys. Rev. B 70, 064423 (2004)

    Article  ADS  Google Scholar 

  27. Parisi, G., Rizzo, T.: J. Phys. A 37, 7979 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Cavagna, A., Giardina, I., Parisi, G.: Phys. Rev. Lett. 92, 120603 (2004)

    Article  ADS  Google Scholar 

  29. Aspelmeier, T., Blythe, R.A., Bray, A.J., Moore, M.A.: Phys. Rev. B 74, 184411 (2006)

    Article  ADS  Google Scholar 

  30. Müller, M., Leuzzi, L., Crisanti, A.: Phys. Rev. B 74, 134431 (2006)

    Article  ADS  Google Scholar 

  31. Engel, A.: J. Phys. Lett. 46, L409 (1985)

    Article  Google Scholar 

  32. Villain, J.: J. Phys. A: Math. Gen. 21, L1099 (1988)

    Article  ADS  Google Scholar 

  33. Nattermann, T.: In: Young, A.P. (ed.) Spin Glasses and Random Fields, p. 277. World Scientific, Singapore (1998)

    Google Scholar 

  34. Le Doussal, P., Monthus, C.: Physica A 317, 143 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. Cavagna, A., Garrahan, J.P., Giardina, I.: Phys. Rev. E 59, 2808 (1999)

    Article  ADS  Google Scholar 

  36. Kac, M.: Bull. Am. Math. Soc. 49, 314 (1943)

    Article  MATH  Google Scholar 

  37. Rice, S.O.: Mathematical analysis of random noise. In: Selected Papers on Noise and Stochastic Processes. Dover, New York (1954)

    Google Scholar 

  38. Belyaev, Ju.K.: Sov. Math. Dokl. 8, 1107 (1967)

    MATH  Google Scholar 

  39. Cline, J.M., Politzer, H.D.: Rey, S.-Y., Wise, M.B.: Commun. Math. Phys. 112, 217 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Adler, R.J., Taylor, J.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  41. Kurchan, J.: J. Phys. A 24, 4969 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  42. Longuet-Higgins, M.S.: J. Opt. Soc. Am. 50, 845 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  43. Weinrib, A., Halperin, B.I.: Phys. Rev. B 26, 1362 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  44. Halperin, B.I., Lax, M.: Phys. Rev. 148, 722 (1966)

    Article  ADS  Google Scholar 

  45. Vogel, H., Möhring, W.: Density of critical points for a Gaussian random function. E-preprint arXiv: 0707.0457 [physics.flu-dyn] (2007)

  46. Broderix, K., Bhattacharya, K.K., Cavagna, A., Zippelius, A., Giardina, I.: Phys. Rev. Lett. 85, 5360 (2000)

    Article  ADS  Google Scholar 

  47. Doye, J.P.K., Wales, D.J.: J. Chem. Phys. 116, 3777 (2002)

    Article  ADS  Google Scholar 

  48. Grigera, T.S., Cavagna, A., Giardina, I., Parisi, G.: Phys. Rev. Lett. 88, 055502 (2002)

    Article  ADS  Google Scholar 

  49. Grigera, T.S.: J. Chem. Phys. 124, 064502 (2006)

    Article  ADS  Google Scholar 

  50. Douglas, M.R., Shiffman, B., Zelditch, S.: Commun. Math. Phys. 252, 325 (2004), and ibid 265, 617 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Fyodorov, Y.V.: Phys. Rev. Lett. 92, 240601 (2004). Erratum: ibid. 93, 149901 (2004) and Acta Phys. Pol. B 36, 2699 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  52. Mehta, M.L.: Random Matrices. 3rd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  53. Azaïs, J.-M., Wschebor, M.: A general expression for the distribution of the maximum of a Gaussian field and the approximation of the tail. E-preprint arXiv: math.PR/0607041 (2006)

  54. Bray, A.J., Dean, D.S.: Phys. Rev. Lett. 98, 150201 (2007)

    Article  ADS  Google Scholar 

  55. Fyodorov, Y.V., Sommers, H.-J., Williams, I.: JETP Letters 85, 261 (2007)

    Article  ADS  Google Scholar 

  56. Ben Arous, G., Dembo, A., Guionnet, A.: Probab. Theory Relat. Fields 136, 619 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  57. Castellani, T., Cavagna, A.: J. Stat. Mech: Theor. Exp. P05012 (2005)

  58. Boutet de Monvel, A., Pastur, L., Shcherbina, M.: J. Stat. Phys. 79, 585 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Dean, D.S., Majumdar, S.N.: Phys. Rev. Lett. 97, 160201 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  60. Ergün, G., Fyodorov, Y.V.: Phys.Rev. E 68, 046124 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  61. Muskhelishvili, N.I.: Singular Integral Equations. Dover, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan V. Fyodorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fyodorov, Y.V., Williams, I. Replica Symmetry Breaking Condition Exposed by Random Matrix Calculation of Landscape Complexity. J Stat Phys 129, 1081–1116 (2007). https://doi.org/10.1007/s10955-007-9386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9386-x

Keywords

Navigation