Skip to main content
Log in

Reaction Rate of Small Diffusing Molecules on a Cylindrical Membrane

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Biomembranes consist of a lipid bi-layer into which proteins are embedded to fulfill numerous tasks in localized regions of the membrane. Often, the proteins have to reach these regions by simple diffusion. Motivated by the observation that IP3 receptor channels (IP3R) form clusters on the surface of the endoplasmic reticulum (ER) during ATP-induced calcium release, the reaction rate of small diffusing molecules on a cylindrical membrane is calculated based on the Smoluchowski approach. In this way, the cylindrical topology of the tubular ER is explicitly taken into account. The problem can be reduced to the solution of the diffusion equation on a finite cylindrical surface containing a small absorbing hole. The solution is constructed by matching appropriate ‘inner’ and ‘outer’ asymptotic expansions. The asymptotic results are compared with those from numerical simulations and excellent agreement is obtained. For realistic parameter sets, we find reaction rates in the range of experimentally measured clustering rates of IP3R. This supports the idea that clusters are formed by a purely diffusion limited process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977)

    ADS  Google Scholar 

  2. Chalmers, M., Schell, M., Thorn, P.: Agonist-evoked inositol trisphosphate receptor IP3R clustering is not dependent on changes in the structure of the endoplasmic reticulum. Biochem. J. 394(1), 57–66 (2006)

    Google Scholar 

  3. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A., Jacobson, K.: Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284 (2002)

    Google Scholar 

  4. Falcke, M.: Reading the patterns in living cells—the physics of Ca2+ signaling. Adv. Phys. 53(3), 255–440 (2004)

    Article  ADS  Google Scholar 

  5. Falcke, M., Malchow, D. (eds.): Understanding Calcium Dynamics. Lecture Notes in Physics. Springer, Berlin (2003)

    Google Scholar 

  6. Ferreri-Jacobia, M., Mak, D.D., Foskett, J.K.: Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca2+ release channel in endoplasmic reticulum membrane. J. Biol. Chem. 280, 3824–3831 (2005)

    Article  Google Scholar 

  7. Flannery, R.J., French, D.A., Kleene, S.J.: Clustering of cyclic-nucleotide-gated channels in olfactory cilia. Biophys. J. 91(1), 179–188 (2006). DOI: 10.1529/biophysj.105.079046. URL: http://www. biophysj.org/cgi/content/abstract/91/1/179

    Article  ADS  Google Scholar 

  8. Fukatsu, K., Bannai, H., Zhang, S., Nakumara, H., Inoue, T., Mikoshiba, K.: Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1n in neutonal dendrites. J. Biol. Chem. 279(47), 48,976–48,982 (2004)

    Article  Google Scholar 

  9. Goldstein, B., Posner, R.G., Torney, D.C., Erickson, J., Holowka, D., Baird, B.: Competition between solution and cell surface receptors for ligand. Biophys. J. 56, 955–966 (1989)

    Google Scholar 

  10. Gopalakrishnan, M., Forsten-Williams, K., Nugent, M.A., Täuber, U.C.: Effects of receptor clustering on ligand dissociation kinetics: theory and simulations. Biophys. J. 89, 3686–3700 (2005)

    Article  Google Scholar 

  11. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965)

    Google Scholar 

  12. Hansen, E.R.: A Table of Series and Products. Prentice-Hall, New Jersey (1975)

    MATH  Google Scholar 

  13. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    MATH  Google Scholar 

  14. Knopp, K.: Theorie und Anwendung der Unendlichen Reihen. Springer, Berlin (1964)

    MATH  Google Scholar 

  15. Lange, C., Weinitschke, H.: Singular perturbations of elliptic problems on domains with small holes. Stud. Appl. Math. 92, 55–93 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Larsen, A.Z., Kummer, U.: Information processing in calcium signal transduction. In: Falcke, M., Malchow, D. (eds.) Understanding Calcium Dynamics. Lecture Notes in Physics, pp. 153–178. Springer, Berlin (2003)

    Google Scholar 

  17. Matlab: Partial Differential Equation Toolbox, User’s Guide. The Mathworks, Natick (1996)

    Google Scholar 

  18. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  20. Shoup, D., Szabo, A.: Role of diffusion in ligand binding to macromolecules and cell-bound receptors. Biophys. J. 40, 33–39 (1982)

    Article  ADS  Google Scholar 

  21. v. Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  22. Tateishi, Y., Hattori, M., Nakayama, T., Iwai, M., Bannai, H., Nakamura, T., Michikawa, T., Inoue, T., Mikoshiba, K.: Cluster formation of inositol 1,4,5-trisphosphate recepter requires its transition to open state. J. Biol. Chem. 280(8), 6816–6822 (2005)

    Article  Google Scholar 

  23. Torney, D.C., Goldstein, B.: Rates of diffusion limited reaction in periodic systems. J. Stat. Phys. 49(3), 725–750 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  24. Ward, M.J.: Diffusion and bifurcation problems in singularly perturbed domains. Nat. Resour. Model. 13(2), 271–302 (2000)

    Article  MATH  Google Scholar 

  25. Ward, M.J., Henshaw, W.D., Keller, J.B.: Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. Appl. Math. 53(3), 799–828 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Straube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straube, R., Ward, M.J. & Falcke, M. Reaction Rate of Small Diffusing Molecules on a Cylindrical Membrane. J Stat Phys 129, 377–405 (2007). https://doi.org/10.1007/s10955-007-9371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9371-4

Keywords

Navigation