Skip to main content
Log in

The Transport Properties of the Cell Membrane Ion Channels in Electric Fields: Bethe Lattice Treatment

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The interactive two-state model of cell membrane ion channels in an electric field is formulated on the Bethe lattice by means of the exact recursion relations. The probability of channel opening or maximum fractions of open potassium and sodium channels are obtained by solving a non-linear algebraic equation. Using known parameters for the conventional mean-field theory the model gives a good agreement with the experiment both at low and high trans-membrane potential values. For intermediate voltages, the numerical results imply that collective effects are introduced by trans-membrane voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aidley, D.J., Stanfield, P.R.: Ion Channels. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 116, 424–448 (1952)

    Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: The currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449–472 (1952)

    Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473–496 (1952)

    Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497–506 (1952)

    Google Scholar 

  6. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane currents and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    Google Scholar 

  7. Aihara, K., Matsumoto, G.: Two stable steady states in the Hodgkin–Huxley axons. Biophys. J. 41, 87–89 (1983)

    Google Scholar 

  8. DeFelice, L.J., Isaac, A.: Chaotic states in a random world: Relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Stat. Phys. 70, 339–354 (1992)

    Article  ADS  Google Scholar 

  9. Fox, R.F.: Stochastic versions of the Hodgkin–Huxley equations. Biophys. J. 72, 2068–2074 (1997)

    Article  ADS  Google Scholar 

  10. Hasegawa, H.: Dynamical mean-field theory of noisy spiking neuron ensembles: application to the Hodgkin–Huxley model. Phys. Rev. E 68, 041909 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Casado, J.M.: Synchronization of two Hodgkin–Huxley neurons due to internal noise. Phys. Lett. A 310, 400–406 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Özer, M., Erdem, R.: A new methodology to define the equilibrium value function in the kinetics of (in)activation gates. NeuroReport 14, 1071–1073 (2003)

    Article  Google Scholar 

  13. Özer, M., Erdem, R.: Dynamics of voltage-gated ion channels in cell membranes by the path probability method. Physica A 331, 51–60 (2004)

    Article  ADS  Google Scholar 

  14. Özer, M., Erdem, R., Provaznik, I.: A new approach to define dynamics of the ion channel gates. NeuroReport 15, 335–338 (2004)

    Article  Google Scholar 

  15. Erdem, R., Ekiz, C.: A noninteractive two-state model of cell membrane ion channels using the pair approximation. Phys. Lett. A 331, 28–33 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Erdem, R., Ekiz, C.: A kinetic model for voltage-gated ion channels in cell membranes based on the path integral method. Physica A 349, 283–290 (2005)

    Article  ADS  Google Scholar 

  17. Correa, A.M., Bezanilla, F., Latorre, R.: Gating kinetics of batrachotoxin-modified Na channels in the squid giant axon. Biophys. J. 61, 1332–1352 (1992)

    Google Scholar 

  18. Polk, C., Postow, E.: Handbook of Biological Effects of Electromagnetic Fields. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  19. Bond, J.D., Wyeth, N.C.: In: Blank, M., Findl, E. (eds.) Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems. Plenum, New York (1987)

    Google Scholar 

  20. Yang, Y.S., Thompson, C.J., Anderson, V., Wood, A.W.: A statistical mechanical model of cell membrane ion channels in electric fields: the mean-field approximation. Physica A 268, 424–432 (1999)

    Article  Google Scholar 

  21. Rall, W.: In: Kandel, E.R. (ed.) Handbook of Physiology, the Nervous System. American Physiological Society, Bethesda (1977)

    Google Scholar 

  22. Weiss, T.F.: Cellular Biophysics: Electrical Properties. MIT Press, Cambridge (1996)

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics. Pergamon, Oxford (1986)

    Google Scholar 

  24. Salman, H., Soen, Y., Braun, E.: Voltage fluctuations and collective effects in ion channel protein ensembles. Phys. Rev. Lett. 77, 4458–4461 (1996)

    Article  ADS  Google Scholar 

  25. Salman, H., Braun, E.: Voltage dynamics of single-type voltage-gated ion-channel protein ensembles. Phys. Rev. E 56, 852–864 (1997)

    Article  ADS  Google Scholar 

  26. Braun, E.: Dynamics of voltage-gated ion-channel proteins. Physica A 249, 64–72 (1998)

    Article  Google Scholar 

  27. Siwy, Z., Ausloos, M., Ivanova, K.: Correlation studies of open and closed state fluctuations in an ion channel: analysis of ion current through a large-conductance locust potassium channel. Phys. Rev. E 65, 031907 (2002)

    Article  ADS  Google Scholar 

  28. Erdem, R., Ekiz, C.: An interactive two-state model for cell membrane potassium and sodium ion channels in electric fields using the pair approximation. Physica A 351, 417–426 (2005)

    Article  ADS  Google Scholar 

  29. Essam, J.M., Fisher, M.E.: Some basic definitions in graph theory. Rev. Mod. Phys. 42, 271–288 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gujrati, P.D.: Bethe or Bethe-like lattice calculations are mere reliable than conventional mean-field calculations. Phys. Rev. Lett. 77, 809–812 (1995)

    Article  ADS  Google Scholar 

  31. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, New York (1982)

    MATH  Google Scholar 

  32. Thouless, D.J.: Spin-glass on a Bethe lattice. Phys. Rev. Lett. 56, 1082–1085 (1986)

    Article  ADS  Google Scholar 

  33. Bleher, P.M., Ruiz, J., Zagrebnov, V.A.: On the phase diagram of the random-field Ising model on the Bethe lattice. J. Stat. Phys. 93, 33–78 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Sabhapandit, S., Shukla, P., Dhar, D.: Distribution of avalanche sizes in the hysteretic response of the random-field Ising model on a Bethe lattice at zero temperature. J. Stat. Phys. 98, 103–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Albayrak, E., Keskin, M.: The spin-3/2 Blume–Capel model on the Bethe lattice using the recursion method. J. Magn. Magn. Mater. 218, 121–127 (2000)

    Article  ADS  Google Scholar 

  36. Ekiz, C.: Bethe lattice consideration of the antiferromagnetic spin-1 Ising model. Phys. Lett. A 324, 114–119 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ekiz, C.: The antiferromagnetic spin-3/2 Blume–Capel model on the Bethe lattice using the recursion method. J. Magn. Magn. Mater. 284, 409–415 (2004)

    Article  ADS  Google Scholar 

  38. Lepetit, M.-B., Cousy, M., Pastor, G.M.: Density-matrix renormalization study of the Hubbard model on Bethe lattice. Eur. Phys. J. B 13, 421–427 (2000)

    Article  ADS  Google Scholar 

  39. Lin, Z., Liu, Y.: Electronic transport properties of the Bethe lattice. Phys. Lett. A 320, 70–80 (2003)

    Article  MATH  ADS  Google Scholar 

  40. Eckstein, M., Koller, M., Byczuk, K., Vollhardt, D.: Hopping on the Bethe lattice: exact results for densities of states and dynamical mean-field theory. Phys. Rev. B 71, 235119 (2005)

    Article  ADS  Google Scholar 

  41. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland (1992)

    Google Scholar 

  42. Plonsey, R., Barr, R.C.: Bioelectricity: A Quantitative Approach. Plenum, New York (1988)

    Google Scholar 

  43. Guyton, A.C.: Textbook of Medical Physiology. Saunders, Philadelphia (1991)

    Google Scholar 

  44. Armstrong, C.M., Bezanilla, F.: Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63, 533–552 (1974)

    Article  Google Scholar 

  45. Keynes, R.D., Rojans, E.: Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J. Physiol. (Lond.) 239, 393–434 (1974)

    Google Scholar 

  46. Conti, F., De Felice, L.J., Wanke, E.: Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol. (Lond.) 248, 45–82 (1975)

    Google Scholar 

  47. Marom, S., Salman, H., Lyakhov, V., Braun, E.: Effects of density and gating of delayed-rectifier potassium channels on resting membrane potential and its fluctuations. J. Membrane Biol. 154, 267–274 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rıza Erdem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdem, R., Ekiz, C. The Transport Properties of the Cell Membrane Ion Channels in Electric Fields: Bethe Lattice Treatment. J Stat Phys 129, 469–481 (2007). https://doi.org/10.1007/s10955-007-9370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9370-5

Keywords

Navigation