Skip to main content
Log in

A Trickiness of the High-Temperature Limit for Number Density Correlation Functions in Classical Coulomb Fluids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Debye-Hückel theory describes rigorously the thermal equilibrium of classical Coulomb fluids in the high-temperature β→ 0 regime (β denotes the inverse temperature). It is generally believed that the Debye-Hückel theory and the systematic high-temperature expansion provide an adequate description also in the region of small strictly positive values of β > 0. This hypothesis is tested in the present paper on a two-dimensional Coulomb gas of pointlike +/− unit charges interacting via a logarithmic potential which is equivalent to an integrable sine-Gordon field model. In particular, we apply a form factor method to obtain the exact asymptotic large-distance behavior of particle correlation functions, considered in the charge and number density combinations. We first determine the general forms of the leading and subleading asymptotic terms at strictly positive β > 0 and then evaluate their high-temperature β→ 0 forms. In the case of the charge correlation function, the leading asymptotic term at a strictly positive β > 0 is also the leading one in the high-temperature β→ 0 regime. On the contrary, the β→ 0 behavior of the number density correlation function is accompanied by an interference between the first two asymptotic terms. Consequently, the large-distance behavior of this function exhibits a discontinuity when going from strictly positive values of β > 0 to the Debye-Hückel limit β→ 0. This is the crucial conclusion of the paper: the large-distance asymptotics and the high-temperature limit do not commute for the density correlation function of the two-dimensional Coulomb gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph. A. Martin, Rev. Mod. Phys. 60:1075 (1988).

    Article  ADS  Google Scholar 

  2. P. Debye and E. Hückel, Phys. Z. 24:185 (1923).

    Google Scholar 

  3. T. Kennedy, Comm. Math. Phys. 92:269 (1983).

    Article  MATH  ADS  Google Scholar 

  4. R. R. Netz and H. Orland, Eur. Phys. J. E 1:203 (2000).

  5. T. Kennedy, J. Stat. Phys. 37:529 (1984).

    Article  Google Scholar 

  6. R. J. Rivers, Path Integral Methods in Quantum Field Theory (Cambridge University Press, Cambridge, 1987).

  7. Y. Levin, Rep. Prog. Phys. 65:1577 (2002).

    Article  ADS  Google Scholar 

  8. L. Šamaj and I. Travěnec, J. Stat. Phys. 101:713 (2000).

    Article  Google Scholar 

  9. L. Šamaj and B. Jancovici, J. Stat. Phys. 106:301 (2002).

    Article  Google Scholar 

  10. L. Šamaj and B. Jancovici, J. Stat. Phys. 106:323 (2002).

    Article  Google Scholar 

  11. L. Šamaj and B. Jancovici, J. Stat. Phys. 103:717 (2001).

    Article  Google Scholar 

  12. L. Šamaj and Z. Bajnok, Phys. Rev. E 72:061503 (2005).

    Article  ADS  Google Scholar 

  13. P. Minnhagen, Rev. Mod. Phys. 59:1001 (1987).

    Article  ADS  Google Scholar 

  14. L. Šamaj, J. Phys. A: Math. Gen. 36:5913 (2003).

    Article  ADS  Google Scholar 

  15. A. Zamolodchikov and Al. Zamolodchikov, Ann. Phys. (N.Y.) 120:253 (1979).

    Article  ADS  Google Scholar 

  16. C. Destri and H. de Vega, Nucl. Phys. B 358:251 (1991).

    Article  ADS  Google Scholar 

  17. Al. Zamolodchikov, Int. J. Mod. Phys. A 10:1125 (1995).

    Article  ADS  Google Scholar 

  18. F. A. Smirnov, Form-Factors in Completely Integrable Models of Quantum Field Theory (World Scientific, Singapore, 1992).

  19. S. Lukyanov, Mod. Phys. Lett. A 12:2543 (1997).

    Article  MATH  ADS  Google Scholar 

  20. G. Mussardo, Phys. Rep. 218:215 (1992).

    Article  ADS  Google Scholar 

  21. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed. (Academic Press, London, 1994).

  22. B. Jancovici, P. Kalinay and L. Šamaj, Physica A 279:260 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Šamaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šamaj, L. A Trickiness of the High-Temperature Limit for Number Density Correlation Functions in Classical Coulomb Fluids. J Stat Phys 128, 569–586 (2007). https://doi.org/10.1007/s10955-007-9337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9337-6

Key Words

Navigation