Skip to main content
Log in

Lifshitz Tails for Acoustic Waves in Random Quantum Waveguide

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this study, we consider acoustic operators in a random quantum waveguide. Precisely we deal with an elliptic operator in the divergence form on a random strip. We prove that the integrated density of states of the relevant operator exhibits Lifshitz behavior at the bottom of the spectrum. This result could be used to prove localization of acoustic waves at the bottom of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Aizenman and Molchanov, Localization at large disorder and at extreme energies:an elementary derivation, Commun. Math. Phys. 157:245–278 (1993).

  • R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators. (Birkhäuser Boston, Basel, Berlin, 1990).

  • D. Damanik and P. Stollmann, Multiscale analysis implies strong dynamical localization, Geom. Funct. Anal. 26 N 3:411–428 (2001).

    Google Scholar 

  • R. Dautray and J-L. Lions, Mathematical Analysis and Numerical Methods for Sience and Technology. vol 2 (Springer-Verlag, Berlin, 1988).

  • E. B. Davies and L. Parnovski, Trapped modes in acoustic waveguides, Qua. Jour. Mech. Appl Math. 513:477–492 (1998).

    Article  MATH  Google Scholar 

  • A. Dembo and O. Zeitouni. Large Deviation and Applications (Jones and Bartlett Publishers, Boston, 1992).

    Google Scholar 

  • J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model, Commu. Math. Phys. 88:151–184 (1983).

    Article  MATH  ADS  Google Scholar 

  • H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124:285–299 (1989).

    Article  MATH  ADS  Google Scholar 

  • P. Duclos and P. Exner, Curvature-induced Bound States in Quantum waveguides in two and three dimensions, Rev. Math. Phy. 37:4867–4887 (1989).

    Google Scholar 

  • D. Borisov and P. Exner, Exponential splitting of bound states in a waveguide with a pair of distant windows, J. Phys. A 37 n 10:3411–3428 (2004).

    Google Scholar 

  • P. Exner, P. Šeba, M. Tater, and D. Vaněk, Bound states and scattering in quantum waveguides coupled laterally through a boundary window, J. Math. Phys. 37 n 10:4867–4887 (1996).

    Google Scholar 

  • P. Exner and S. A Vugalter, Asymptotic Estimates for bound states in quantum waveguide coupled laterally through a boundary window. Ann. Inst. H. Poincaré Phy. Théor. 65:109–123 (1996).

    MATH  Google Scholar 

  • A. Figotin and A. Klein, Localization of classical waves i: acoustic waves, Commun. Math. Phys. 180:439–482 (1996).

    Article  MATH  ADS  Google Scholar 

  • J. Fröhlich, F. Martinelli, E. Scoppola and T. Spencer, A Constructive proof of localization in the Anderson tight binding model, Commu. Math. Phys. 101:21–46 (1985).

    Article  MATH  ADS  Google Scholar 

  • F. Germinet and S. De Bièvre, Dynamical localization for discrete and continous random Schrödinger operators, Commu. Math. Phys. 194 N 2:323–341 (1998).

  • F. Germinet and A. Klein, Bootstrap multiscale analysis and localization in random media, Commu. Math. Phys. 222N 2:415–448 (2001).

    Google Scholar 

  • S. John, The localization of light in photonic gaps and localization, NATO ASI Serie B:Physical 308–321 (1993).

  • T. Kato, Perturbation Theory for linear operators (Springer-Verlag, New York, 1980).

    MATH  Google Scholar 

  • A. Klein, J. Lacroix, and A. Speis, Athanasios, Localization for the Anderson model on a strip with singular potentials, J. Funct. Anal. 94n 1:135–155 (1990).

    Google Scholar 

  • A. Klein, J. Lacroix and A. Speis, Regularity of the density of states in the Anderson model on a strip for potentials with singular continuous distributions, J. Statist. Phys. 57n 1–2:65–88 (1989).

    Google Scholar 

  • A. Klein and A. Speis, Klein, Abel; Speis, Athanasios Smoothness of the density of states in the Anderson model on a one-dimensional strip, Ann. Physics 183n 2:352–398 (1988).

  • W. Kirsch, Random Schrödinger operators. A course. In: Schrödinger operators, Sönderborg 1988, Lecture Notes in Phys. 345 (Springer, Berlin, 1989) pp. 264–370.

  • W. Kirsch, Wegner estimates and Anderson localization for alloy-type potentials. Math. Z. 221:507-512 (1996).

    MATH  Google Scholar 

  • W. Kirsch, P. Stollmann and G. Stolz: Anderson localization for random Schrodinger operators with long range interactions. Commu. Math. Phys. 195:495–507 (1998).

    Google Scholar 

  • W. Kirsch and F. Martinelli, On the Spectrum Of Schrödinger operators with a Random Potential, Commu. Math. Phys 85:329–350 (1982).

    Article  MATH  ADS  Google Scholar 

  • F. Kleespies and P. Stollmann, Lifshitz asymptotics and localization for random quantum waveguides. Rev. Math. Phy. 12:1345–1365 (2000).

    Article  MATH  Google Scholar 

  • F. Klopp, Localization for some continus Random Schrödinger operators. Commun. Math. Phys. 167:553–569 (1995).

    Article  MATH  ADS  Google Scholar 

  • F. Klopp, Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Mathematical J. 98(2):335–396 (1999).

    Article  Google Scholar 

  • S. Kondej and I.Veselić, Spectral gap of segments of periodic waveguides. Let. Math. Phy. (2006).

  • S. Kondej and I.Veselić, The low-lying spectrum of periodic quantum waveguides. in prepation.

  • S.M. Kozlov, Conductivity of two-dimrnsional random media. Russian Math. Surveys 34N 4:168-169 (1979).

    Google Scholar 

  • P. Kuchment, Floquet Theory for Partial Differential Equations volume 60 of Operator Theory: Advances and applications (Birkhäser, Basel, 1983).

  • J. T. Londergan, J. P. Carini and D. P. Murdock, Binding and Scattering in Two-dimensional Systems (Springer, Berlin, 1999).

    MATH  Google Scholar 

  • I. Lifshitz, Structure of the energy spectrum of impurity bands in disordered solid solutions. Soviet Phy. JETP 17:1159–1170 (1963).

    Google Scholar 

  • H. Najar, Lifshitz tails for random acoustic operators. J. Math. Phys. 44N 4:1842–1867 (2003).

    Google Scholar 

  • H. Najar, Asymptotic behavior of the integrated density of states of acoustic operator with long range random perturbations. J. Stat. Phys. 115N 4:977–996 (2003).

    Google Scholar 

  • H. Najar, Non-Lifshitz tails at the spectrum bottom of some random operator. submitted

  • H. Najar, 2-Dimensional localization of acoustic waves in random perturbation of periodic media. J. Math. Ana. App. 322I:1–17 (2006).

    Google Scholar 

  • H. Najar, Non-Lifshitz tails at the spectrum bottom of some random operators. submitted

  • L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-Verlag, Heidelberg, 1992).

    MATH  Google Scholar 

  • M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. IV: Analysis of Operators (Academic, Press, 1978).

  • P. Stollmann, Caught by Disorder Bounded States in random Media. (Birkhäuser, 2001).

  • I. Veselić, Localization for random perturbation of periodic Schrödinger operators with regular Floquet eigenvalues. Technical report Unive. Bochum.

Download references

Author information

Authors and Affiliations

Authors

Additional information

2000 Mathematics Subject Classification: 81Q10, 35P05, 37A30, 47F05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najar, H. Lifshitz Tails for Acoustic Waves in Random Quantum Waveguide. J Stat Phys 128, 1093–1112 (2007). https://doi.org/10.1007/s10955-007-9333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9333-x

Key Words

Navigation