Skip to main content
Log in

Kinetic Approach to Long time Behavior of Linearized Fast Diffusion Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that the rate of convergence towards the self-similar solution of certain linearized versions of the fast diffusion equation can be related to the number of moments of the initial datum that are equal to the moments of the self-similar solution at a fixed time. As a consequence, we find an improved rate of convergence to self-similarity in terms of a Fourier based distance between two solutions. The results are based on the asymptotic equivalence of a collisional kinetic model of Boltzmann type with a linear Fokker-Planck equation with nonconstant coefficients, and make use of methods first applied to the reckoning of the rate of convergence towards equilibrium for the spatially homogeneous Boltzmann equation for Maxwell molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Baldassarri, U. Marini Bettolo Marconi and A. Puglisi, Kinetic models of inelastic gases. Mat. Mod. Meth. Appl. Sci. 12:965–983 (2002).

    Google Scholar 

  2. M. Bisi, J. A. Carrillo and G. Toscani, Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria. J. Statist. Phys. 118:301–331 (2005).

    Article  MATH  Google Scholar 

  3. M. Bisi, J. A. Carrillo and G. Toscani, Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Statist. Phys. 124(2-4):625–653 (2006).

    Google Scholar 

  4. A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwellian molecules. Sov. Sci. Rev. 7:111–233 (1988).

    Google Scholar 

  5. E. A. Carlen, E. Gabetta and G. Toscani, Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199:521–546 (1999).

    Article  MATH  ADS  Google Scholar 

  6. J. A. Carrillo, M. Di Francesco and G. Toscani, Strict Contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering. Proc. Amer. math. Soc. 135(2):353–363 (2007).

    Google Scholar 

  7. J. A. Carrillo, M. P. Gualdani and G. Toscani, Finite speed of propagation in porous media by mass transportation methods. C. R. Math. Acad. Sci. Paris 338(10):815–818 (2004).

    MATH  Google Scholar 

  8. J. A. Carrillo, C. Lederman, P. Markowich and G. Toscani, Poincaré Inequalities for Linearization of Very Fast Diffusion Equations, Nonlinearity 15:565–580 (2002).

    Google Scholar 

  9. J. A. Carrillo and G. Toscani, Exponential convergence toward equilibrium for homogeneous Fokker–planck type equations. Math. Meth Appl. Sci. 21:1269–1286 (1998).

    Article  MATH  Google Scholar 

  10. J. A. Carrillo and G. Toscani, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49(1):113–142 (2000).

    Article  MATH  Google Scholar 

  11. J. A. Carrillo and J. L. Vázquez, Fine asymptotics for fast diffusion equations. Comm. Partial Differential Equations 28:1023–1056 (2003).

    Article  MATH  Google Scholar 

  12. C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases Springer Series in Applied Mathematical Sciences, Vol. 106, Springer-Verlag (1994).

  13. D. Cordero-Erausquin and R. J. McCann, Accelerated diffusion to minimum entropy, personal communication (2005).

  14. J. Denzler and R. J. McCann, Fast diffusion to self-similarity: complete spectrum, long time asymptotics and numerology. Arch. Rational Mech. Anal. 175:301–342 (2005).

    Article  MATH  ADS  Google Scholar 

  15. L. Desvillettes About the regularizing properties of the non-cut-off Kac equation. Comm. Math. Phys. 168(2):417–440 (1995).

  16. J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et décomposition de fonctions. C. R. Acad. Sci. Paris Sér. I Math. 315(6):693–698 (1992).

    MATH  Google Scholar 

  17. E. Gabetta, G. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81:901–934 (1995).

    Article  MATH  Google Scholar 

  18. T. Goudon, S. Junca and G. Toscani, Fourier-based distances and Berry-Esseen like inequalities for smooth densities. Monatsh. Math. 135(2):115–136 (2002).

    Article  MATH  Google Scholar 

  19. Y. J. Kim and R. J. McCann, Potential theory and optimal convergence rates in fast nonlinear diffusion. J. Math. Pures Appl. 86:42–67 (2006).

    Google Scholar 

  20. R. G. Laha and V. K. Rohatgi, Probability Theory, John Wiley and Sons, New York, (1979).

  21. L. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sowjet. 10:154 (1936). Trad. The transport equation in the case of Coulomb interactions, in D. ter Haar, (ed.) Collected papers of L.D. Landau, Pergamon Press, Oxford, p. 163–170 (1981)

  22. R. J. McCann and D. Slepcev, Second-order asymptotics for the fast-diffusion equations,Int. Math. Res. Not. Art. ID 24947, 22 pp (2006).

  23. L. Pareschi and G. Toscani Self-similarity and power-like tails in nonconservative kinetic models. J. Statist. Phys. 126(2–4):747–779 (2006).

  24. A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model. J. Statist. Phys. 114:1453–1480 (2004).

    Article  MATH  Google Scholar 

  25. G. Toscani, One-dimensional kinetic models with dissipative collisions. M2AN Math. Model. Numer. Anal. 34:1277–1292 (2000).

    Article  MATH  Google Scholar 

  26. G. Toscani, A central limit theorem for solutions fo the porous medium equation. J. Evol. Equ. 5:185–203 (2005).

    Article  MATH  Google Scholar 

  27. G. Toscani and C. Villani, Probability Metrics and Uniqueness of the Solution to the Boltzmann Equation for a Maxwell Gas. J. Statist. Phys. 94:619–637 (1999).

    Article  MATH  Google Scholar 

  28. J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space. J. Evol. Equ. 3:67–118.

  29. J. L. Vázquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium. Trans. Amer. Math. Soc. 277(2):507–527 (1983).

    Article  MATH  Google Scholar 

  30. C. Villani, Contribution à l7’étude mathématique de séquations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. PhD thesis, Univ. Paris-Dauphine (1998).

  31. C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rational Mech. Anal. 143:273–307 (1998).

    Article  MATH  Google Scholar 

  32. T. P. Witelski and A. J. Bernoff, Self-similar asymptotics for linear and nonlinear diffusion equations. Stud. Appl. Math. 100(2):153–193 (1998).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Cáceres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cáceres, M.J., Toscani, G. Kinetic Approach to Long time Behavior of Linearized Fast Diffusion Equations. J Stat Phys 128, 883–925 (2007). https://doi.org/10.1007/s10955-007-9329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9329-6

Key words

Navigation