Skip to main content

Advertisement

Log in

Alternative Variational Approach to Cactus Lattices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, I will present an alternative approach to the Bethe or cactus lattice approximation, widely employed in the theory of cooperative phenomena. This approach relies on a variational free energy, which is equivalent to the Bethe free energy in that it has the same stationary points, but allows one to simplify analytical calculations, since it is a function of only single-site probability distributions, in the same way as an ordinary mean-field (Bragg-Williams) free energy. As an application, I shall discuss a derivation of closed-form equations for critical points in Ising-like models. Moreover, I will suggest a rule of thumb to choose the cactus lattice connectivity yielding the best approximation for the corresponding model defined on an ordinary lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Plischke and B. Bergersen, Equilibrium Statistical Physics (World Scientific Publishing, Singapore, 1994).

    MATH  Google Scholar 

  2. C. Domb, Adv. Phys. 9:149 (1960).

    Article  ADS  Google Scholar 

  3. H. A. Bethe, Proc. R. Soc. A 150:552 (1935).

    MATH  ADS  Google Scholar 

  4. E. A. Guggenheim, Proc. R. Soc. A 148:304 (1935).

    MATH  ADS  Google Scholar 

  5. E. A. Guggenheim and M. L. McGlashan, Proc. R. Soc. A 206:335 (1951).

    MATH  ADS  MathSciNet  Google Scholar 

  6. T. P. Eggarter, Phys. Rev. B 9:2989 (1974).

    Article  ADS  Google Scholar 

  7. M. Pretti, J. Stat. Phys. 111:993 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Morita, Physica A 105:620 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. L. Monroe, Physica A 256:217 (1998).

    Article  Google Scholar 

  10. T. A. Arakelyan, V. R. Ohanyan, L. N. Ananikyan, N. S. Ananikyan and M. Roger, Phys. Rev. B 67:024424 (2003).

    Article  ADS  Google Scholar 

  11. I. Ono, Prog. Theor. Phys. Supp. 87:102 (1986).

    ADS  Google Scholar 

  12. G. M. Bell and D. A. Lavis, J. Phys. A: Gen. Phys. 3:568 (1970).

    Article  ADS  Google Scholar 

  13. M. Pretti and C. Buzano, J. Chem. Phys. 121:11856 (2004).

    Article  ADS  Google Scholar 

  14. C. Buzano, E. De Stefanis and M. Pretti, Phys. Rev. E 71:051502 (2005).

    Article  ADS  Google Scholar 

  15. P. Chandra and B. Doucot, J. Phys. A: Math. Gen. 27:1541 (1994).

    Article  ADS  Google Scholar 

  16. J. F. Stilck and M. J. de Oliveira, Phys. Rev. A 42:5955 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Aguilera-Granja and R. Kikuchi, Physica A 176:514 (1991).

    Article  ADS  Google Scholar 

  18. J. F. Stilck, K. D. Machado and P. Serra, Phys. Rev. Lett. 76:2734 (1996).

    Article  ADS  Google Scholar 

  19. P. D. Gujrati and A. Corsi, Phys. Rev. Lett. 87:025701 (2001).

    Article  ADS  Google Scholar 

  20. M. Pretti, Phys. Rev. E 66:061802 (2002).

    Article  ADS  Google Scholar 

  21. V. V. Papoyan and R. R. Shcherbakov, J. Phys. A: Math. Gen. 28:6099 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. M. Mézard and G. Parisi, Eur. Phys. J. B 20:217 (2001).

    Article  ADS  Google Scholar 

  23. A. Montanari, M. Müller and M. Mézard, Phys. Rev. Lett. 92:185509 (2004).

    Article  ADS  Google Scholar 

  24. M. Mézard and R. Zecchina, Phys. Rev. E 66:056126 (2002).

    Article  ADS  Google Scholar 

  25. M. Pretti and M. Weigt, Europhys. Lett. 75:8 (2006).

    Article  ADS  Google Scholar 

  26. R. Kikuchi, Phys. Rev. 81:988 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. R. Kikuchi, J. Chem. Phys. 60:1071 (1974).

    Article  Google Scholar 

  28. G. An, J. Stat. Phys. 52:727 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  29. H. A. Kramers and G. H. Wannier, Phys. Rev. 60:252 (1941).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. C. Buzano and M. Pretti, Phys. Rev. B 56:636 (1997).

    Article  ADS  Google Scholar 

  31. H. A. Kramers and G. H. Wannier, Phys. Rev. 60:263 (1941).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. P. Azaria, H. T. Diep and H. Giacomini, Phys. Rev. Lett. 59:1629 (1987).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pretti.

Additional information

PACS Numbers: 05.20.-y, 05.50.+q, 05.70.Fh, 64.60.-i, 64.60.Cn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pretti, M. Alternative Variational Approach to Cactus Lattices. J Stat Phys 127, 1237–1253 (2007). https://doi.org/10.1007/s10955-007-9324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9324-y

Keywords

Navigation