Skip to main content
Log in

Beyond Scaling and Locality in Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An analytic perturbation theory is suggested in order to find finite-size corrections to the scaling power laws. In the frame of this theory it is shown that the first order finite-size correction to the scaling power laws has following form \(S(r) \cong cr^{\alpha_0}[\ln(r/\eta)]^{\alpha_1}\), where η is a finite-size scale (in particular for turbulence, it can be the Kolmogorov dissipation scale). Using data of laboratory experiments and numerical simulations it is shown shown that a degenerate case with α 0=0 can describe turbulence statistics in the near-dissipation range r > η, where the ordinary (power-law) scaling does not apply. For moderate Reynolds numbers the degenerate scaling range covers almost the entire range of scales of velocity structure functions (the log-corrections apply to finite Reynolds number). Interplay between local and non-local regimes has been considered as a possible hydrodynamic mechanism providing the basis for the degenerate scaling of structure functions and extended self-similarity. These results have been also expanded on passive scalar mixing in turbulence. Overlapping phenomenon between local and non-local regimes and a relation between position of maximum of the generalized energy input rate and the actual crossover scale between these regimes are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioloi and S. Succi, Phys. Rev. E. 48:R29 (1993).

    Article  ADS  Google Scholar 

  2. R. Benzi, L. Biferale, S. Ciliberto, M. V. Struglia and R. Tripiccione, Physica D 96:162 (1996).

    Article  Google Scholar 

  3. D. Sornette, Critical Phenomena in Natural Sciences (Springer, New York, 2004).

    MATH  Google Scholar 

  4. L. Moriconi, A. L. C. Pereira and P. A. Schulz, Phys. Rev. B 69:45109 (2004).

    Article  ADS  Google Scholar 

  5. K. G. Aivalis, K. R. Sreenivasan, Y. Tsuji, J. C. Kiewicki and C. A. Biltoft, Phys. Fluids 14:2439 (2002).

    Article  ADS  Google Scholar 

  6. A. Bershadskii and K. R. Sreenivasan, Phys. Rev. Lett. 93:064501 (2004).

    Article  ADS  Google Scholar 

  7. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 2 (MIT Press, Cambridge, 1975).

  8. K. R. Sreenivasan and R. A. Antonia, Annu. Rev. Fluid Mech. 29:435 (1997).

    Article  ADS  Google Scholar 

  9. M. Nelkin, Adv. Phys. 43:143 (1994).

    Article  ADS  Google Scholar 

  10. C. Meneveau, Phys. Rev. E 54:3657 (1996).

    Article  ADS  Google Scholar 

  11. T. Nakano, D. Fukayama, A. Bershadskii and T. Gotoh, J. Phys. Soc. Japan 71:2148 (2002).

    Article  MATH  ADS  Google Scholar 

  12. K. R. Sreenivasan and A. Bershadskii, Pramana 64:315 (2005).

    ADS  Google Scholar 

  13. J. Schumacher, K. R. Sreenivasan and V. Yakhot, arXiv:nlin.CD/0604072

  14. V. Yakhot, Physica D 215:166 (2006).

    Article  MATH  ADS  Google Scholar 

  15. K. R. Sreenivasan and A. Bershadskii, J. Fluid. Mech. 554:477 (2006).

    Article  MATH  ADS  Google Scholar 

  16. G. K. Batchelor, G. K. An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  17. B. R. Pearson, P.-A. Krogstad and W. van de Water, Phys. Fluids 14:1288 (2002).

    Article  ADS  Google Scholar 

  18. T. Gotoh, D. Fukayama and T. Nakano, Phys. Fluids 14:1065 (2002).

    Article  ADS  Google Scholar 

  19. H. S. Kang, S. Chester and C. Meneveau, J. Fluid. Mech. 480:129 (2003).

    Article  MATH  ADS  Google Scholar 

  20. B. B. Kadomtsev, Plasma Turbulence (Academic Press, New York, 1965).

    Google Scholar 

  21. S. Nazarenko and J.-P. Laval, J. Fluid Mech. 408:301 (2000).

    Article  MATH  ADS  Google Scholar 

  22. J-P. Laval, B. Dubrulle and S. Nazarenko, Phys. Fluids 13:1995 (2001).

    Article  ADS  Google Scholar 

  23. K. R. Sreenivasan and B. Dhruva, Prog. Theor. Phys. Suppl. 130:103 (1998).

    Article  ADS  Google Scholar 

  24. E. A. Novikov, Sov. Phys. JETP 20:1290 (1965).

    Google Scholar 

  25. K. R. Sreenivasan, Phys. Fluids 8:189 (1996).

    Article  MATH  ADS  Google Scholar 

  26. Z. Warhaft, Ann. Rev. Fluid Mach. 32:203 (2000).

    Article  ADS  Google Scholar 

  27. E. Villermaux, C. Innocenti and J. Duplat, Phys. Fluids 13:284 (2001).

    Article  ADS  Google Scholar 

  28. T. Watanabe and T. Gotoh, New J. Phys. 6:40 (2004).

    Article  ADS  Google Scholar 

  29. F. Schmidt, D. Schertzer, S. Lovejoy and Y. Brunet, Europhys. Lett. 34:195 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bershadskii.

Additional information

PACS: 47.27.-i, 47.27.Gs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bershadskii, A. Beyond Scaling and Locality in Turbulence. J Stat Phys 128, 721–739 (2007). https://doi.org/10.1007/s10955-007-9322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9322-0

Key Words

Navigation