Skip to main content
Log in

Sharp Lower Bounds for the Dimension of the Global Attractor of the Sabra Shell Model of Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work we derive lower bounds for the Hausdorff and fractal dimensions of the global attractor of the Sabra shell model of turbulence in different regimes of parameters. We show that for a particular choice of the forcing term and for sufficiently small viscosity term ν, the Sabra shell model has a global attractor of large Hausdorff and fractal dimensions proportional to log  ν −1 for all values of the governing parameter ε, except for ε =1. The obtained lower bounds are sharp, matching the upper bounds for the dimension of the global attractor obtained in our previous work. Moreover, the complexity of the dynamics of the shell model increases as the viscosity ν tends to zero, and we describe a precise scenario of successive bifurcations for different parameters regimes. In the “three-dimensional” regime of parameters this scenario changes when the parameter ε becomes sufficiently close to 0 or to 1. We also show that in the “two-dimensional” regime of parameters, for a certain non-zero forcing term, the long-term dynamics of the model becomes trivial for every value of the viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Babin and M. I. Vishik, Attractors of partial differential equations and estimates of their dimension. Uspekhi Mat. Nauk 38:133–187 (1983) (in Russian); Russian Math. Surveys 38: 151–213 (in English).

  2. L. Biferale, Shell models of energy cascade in turbulence. Annual Rev. Fluid Mech. 35:441–468 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Biferale, A. Lambert, R. Lima and G. Paladin, Transition to chaos in a shell model of turbulence. Physica D 80:105–119 (1995).

    Article  MATH  ADS  Google Scholar 

  4. T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical Systems Approach to Turbulence (Cambridge University Press, 1998.)

  5. P. Constatin, C. Foias, and R. Temam, On the dimension of the attractors in two-dimensional turbulence. Physica D 30:284–296 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Constantin, B. Levant and E. S. Titi, Analytic study of the shell model of turbulence. Physica D 219:120–141 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. P. Constantin, B. Levant and E. S. Titi, Regularity of inviscid shell models of turbulence. Phys. Rev. E 75(1):016304 (2007).

    Article  ADS  Google Scholar 

  8. C. Foias, O. Manley, R. Rosa and R. Temam, Navier–Stokes Equations and Turbulence (Cambridge University Press, 2001).

  9. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995).

  10. E. B. Gledzer, System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. 18:216–217 (1973).

    MATH  ADS  Google Scholar 

  11. L. Kadanoff, D. Lohse and N. Schröghofer, Scaling and linear response in the GOY turbulence model. Physica D 100:165–186 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. J. Kockelkoren, F. Okkels and M. H. Jensen, Chaotic behavior in shell models and shell maps. J. Stat. Phys. 93:833 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  13. L. D. Landau and E. M. Lifschitz, Fluid Mechanics (Pergamon, Oxford, 1977).

  14. V. X. Liu, A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations. Commun. Math. Phys. 158:327–339 (1993).

    Article  MATH  ADS  Google Scholar 

  15. V. S. L'vov, E. Podivilov, A. Pomyalov, I. Procaccia and D. Vandembroucq, Improved shell model of turbulence. Physical Review E. 58(2):1811–1822 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Marchioro, An example of absence of turbulence for any Reynolds number. Comm. Math. Phys. 105:99–106 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. L. D. Meshalkin and Y. G. Sinai, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. J. Appl. Math. Mech. 25:1700–1705 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Mitra, J. Bec, R. Pandit and U. Frisch, Is multiscaling an artifact in the stochastically forced burgers equation? Phys. Rev. Lett. 95:194501 (2005).

    Article  ADS  Google Scholar 

  19. K. Okhitani, M. Yamada Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence. Prog. Theor. Phys. 89:329–341 (1989).

    Article  ADS  Google Scholar 

  20. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer-Verlag, New-York, 1988).

  21. M. Yamada, and K. Okhitani, Lyapunov spectrum of a chaotic model of three-dimensional turbulence. J. Phys. Soc. Jpn. 56:4210–4213 (1987).

    Article  ADS  Google Scholar 

  22. M. Yamada and K. Okhitani, Lyapunov spectrum of a model of two-dimensional turbulence. Phys. Rev. Let. 60(11):983–986 (1988).

    Article  ADS  Google Scholar 

  23. M. Yamada and K. Okhitani, Asymptotic formulas for the Lyapunov spectrum of fully developed shell model turbulence. Phys. Rev. E 57(6):57–60 (1998).

    Article  Google Scholar 

  24. V. I. Yudovich, Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid. J. Appl. Math. Mech. 29:527–544 (1965).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Constantin.

Additional information

AMS Subject Classifications: 76F20, 76D05, 35Q30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantin, P., Levant, B. & Titi, E.S. Sharp Lower Bounds for the Dimension of the Global Attractor of the Sabra Shell Model of Turbulence. J Stat Phys 127, 1173–1192 (2007). https://doi.org/10.1007/s10955-007-9317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9317-x

Keywords

Navigation