Skip to main content
Log in

An Explicit Family of Probability Measures for Passive Scalar Diffusion in a Random Flow

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

We explore the evolution of the probability density function (PDF) for an initially deterministic passive scalar diffusing in the presence of a uni-directional, white-noise Gaussian velocity field. For a spatially Gaussian initial profile we derive an exact spatio-temporal PDF for the scalar field renormalized by its spatial maximum. We use this problem as a test-bed for validating a numerical reconstruction procedure for the PDF via an inverse Laplace transform and orthogonal polynomial expansion. With the full PDF for a single Gaussian initial profile available, the orthogonal polynomial reconstruction procedure is carefully benchmarked, with special attentions to the singularities and the convergence criteria developed from the asymptotic study of the expansion coefficients, to motivate the use of different expansion schemes. Lastly, Monte-Carlo simulations stringently tested by the exact formulas for PDF’s and moments offer complete pictures of the spatio-temporal evolution of the scalar PDF’s for different initial data. Through these analyses, we identify how the random advection smooths the scalar PDF from an initial Dirac mass, to a measure with algebraic singularities at the extrema. Furthermore, the Péclet number is shown to be decisive in establishing the transition in the singularity structure of the PDF, from only one algebraic singularity at unit scalar values (small Péclet), to two algebraic singularities at both unit and zero scalar values (large Péclet).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing Dover, New York, (1972).

  2. R. A. Antonia and K. R. Sreenivasan, Log-normality of temperature dissipation in a turbulent boundary layer. Phys. Fluids 20:1800–1804 (1977).

    Article  ADS  Google Scholar 

  3. E. Balkovsky and A. Fouxon, Two complimentary descriptions of intermittency. Phys. Rev. E. 57:R1231–R1234 (1998).

    Google Scholar 

  4. G. K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity. J. FLuid Mech. 5:113–133 (1959).

    Article  MATH  ADS  Google Scholar 

  5. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory (Springer-Verlag, New York, 2005).

    Google Scholar 

  6. A. Bourlioux and A. J. Majda, Elementary models with probability distribution function intermittency for passive scalars with a mean gradient. Phys. Fluids 14 :881–897 (2002).

    Article  ADS  Google Scholar 

  7. J. C. Bronski and R. M. McLaughlin, Passive scalar intermittency and the ground state of Schrödinger operators. Phys. Fluids 9:181–190 (1997).

    Article  ADS  Google Scholar 

  8. J. C. Bronski and R. M. McLaughlin, Rigorous estimates of the tails of the probability distribution function for the random linear shear model. J. Stat. Phys. 98(3/4):897–915 (2000).

    Article  MATH  Google Scholar 

  9. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X-Z. Wu, S. Zaleski, and G. Zanetti, Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech. 204:1–30 (1989).

    Article  ADS  Google Scholar 

  10. M. Chertkov, G. Falkovich, and I. Kolokolov, Intermittent dissipation of a scalar in turbulence. Phys. Rev. Lett. 80:2121–2124 (1998).

    Article  ADS  Google Scholar 

  11. R. M. Corless, D. J. Jeffrey, and D. E. Knuth, A sequence of series for the Lambert function. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation Maui Hawaii ACM Press, New York, (1997).

  12. C. W. Gardiner, Handbook of Stochastic Methods Springer, New York, (2004).

    MATH  Google Scholar 

  13. M. Holzer and E. D. Siggia, Turbulent mixing of a passive scalar. Phys. Fluids 6:1820–1837 (1994).

    Article  MATH  ADS  Google Scholar 

  14. R. H. Kraichnan, Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11:945–953 (1968).

    Article  MATH  Google Scholar 

  15. A. J. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion. J. Stat. Phys. 73:515 (1993).

    Article  MATH  ADS  Google Scholar 

  16. A. J. Majda, The random uniform shear layer: an explicit example of turbulent diffusion with broad tail probability distributions. Phys. Fluids A 5:1963–1970 (1993).

    Article  MATH  ADS  Google Scholar 

  17. A. J. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Physics Reports 314:237–574 (1999).

    Google Scholar 

  18. J. C. Mason and D. C. Handscomb, Chebyshev Polynomials (Chapmen and Hall/CRC, Boca Raton, 2003).

  19. R. M. McLaughlin and A. J. Majda, An explicit example with non-Gaussian probability distribution for nontrivial scalar mean and fluctuation. Phys. Fluids 8:536–547 (1996).

    Article  MATH  ADS  Google Scholar 

  20. R. T. Pierrehumbert, Lattice models of advection-diffusion. Chaos 10:61–74 (2000).

    Article  MATH  ADS  Google Scholar 

  21. S. C. Plasting and W. R. Young, A bound on scalar variance for the advection—diffusion equation. J. Fluid Mech. 552:289–298 (2006).

    Article  MATH  ADS  Google Scholar 

  22. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1966).

  23. Z. S. She and S. A. Orszag, Physical model of intermittency in turbulence: Inertial range non-Gaussian statistics. Phys. Rev. Lett. 66:1701–1704 (1991).

    Article  ADS  Google Scholar 

  24. J. A. Shohat and J. D. Tamarkin, The Problem of Moments (American Mathematical Society, New York, 1943).

  25. Y. G. Sinai and V. Yakhot, Limiting probability distributions of a passive scalar in a random velocity field. Phys. Rev. Lett. 63:1962–1964 (1989).

    Article  ADS  Google Scholar 

  26. L. C. Sparling and J. T. Bacmeister, Scale dependence of trace microstructure: Pdfs, intermittency and the dissipation scale. Geophys. Res. Lett. 28:2823–2826 (2001).

    Article  ADS  Google Scholar 

  27. J. Thiffeault, C. R. Doering, and J. D. Gibbon, A bound on mixing efficiency for the advection-diffusion equation. J. Fluid Mech. 521:105–114 (2004).

    Article  MATH  ADS  Google Scholar 

  28. S. T. Thoroddsen and C. W. Van Atta, Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech. 244:547–566 (1992).

    Article  ADS  Google Scholar 

  29. E. Vanden-Eijnden, Non-Gaussian invariant measures for the Majda model of decaying turbulent transport. Comm. Pure Appl. Math. 54(9):1146–1167 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. McLaughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronski, J.C., Camassa, R., Lin, Z. et al. An Explicit Family of Probability Measures for Passive Scalar Diffusion in a Random Flow. J Stat Phys 128, 927–968 (2007). https://doi.org/10.1007/s10955-007-9316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9316-y

Keywords

Navigation