Skip to main content
Log in

Functional Feynman-Kac Equations for Limit Lognormal Multifractals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A novel technique of functional Feynman-Kac equations is developed for the probability distribution of the limit lognormal multifractal process introduced by Mandelbrot [in Statistical Models and Turbulence, M. Rosenblatt and C. Van Atta, eds., Springer, New York (1972)] and constructed explicitly by Bacry, Delour, and Muzy [Phys. Rev. E 64:026103 (2001)]. The distribution of the process is known to be determined by the complicated stochastic dependence structure of its increments (SDSI). It is shown that the SDSI has two separate layers of complexity that can be captured in a precise way by a pair of functional Feynman-Kac equations for the Laplace transform. Exact solutions are obtained as power series expansions in the intermittency parameter using a novel intermittency differentiation rule. The expansion of the moments gives a new representation of the Selberg integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Andrews, R. Askey and R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999).

  2. E. Bacry, J. Delour and J.-F. Muzy, Multifractal random walk. Phys. Rev. E 64:026103 (2001a).

    Google Scholar 

  3. E. Bacry, J. Delour and J.-F. Muzy, Modelling financial time series using multifractal random walks. Physica A 299:84–92 (2001b).

    Article  MATH  ADS  Google Scholar 

  4. E. Bacry and J.-F. Muzy, Log-infinitely divisible multifractal random walks. Comm. Math. Phys. 236:449–475 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. J. Barral and B. B. Mandelbrot, Multifractal products of cylindrical pulses. Prob. Theory Relat. Fields 124:409–430 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Calvet and A. Fisher, Multifractality in asset returns. Theory and evidence. Rev. Econ. Stat. LXXXIV:381–406 (2002).

    Google Scholar 

  7. P. Chainais, R. Riedi and P. Abry, Infinitely divisible cascades, In: International Symposium on Physics in Signal and Image Processing (Grenoble, France, 2002).

  8. H. Cramer and M. Leadbetter, Stationary and Related Stochastic Processes; Sample Function Properties and Their Applications (Wiley, New York, 1967).

  9. C. de Calan, J. M. Luck, Th. M. Nieuwenhuizen, and D. Petritis, On the distribution of a random variable occuring in 1D disordered systems. J. Phys. A: Math. Gen. 18:501–523 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Geman and M. Yor, Bessel processes, asian options, and perpetuities. Math. Finance 3:349–375 (1993).

    Article  MATH  Google Scholar 

  11. I. Gikhman and A. Skorohod, The Theory of Stochastic Processes,vol. I (Springer-Verlag, New York, 1974).

  12. I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theory Probab. Appl. 5:285–301 (1960).

    Google Scholar 

  13. A. Goldberger, L. Amaral, J. Hausdorff, P. Ivanov, C. Peng and H. Stanley, Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natil. Acad. Sci. USA 99:2466–2472 (2002).

    Article  ADS  Google Scholar 

  14. P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, and H. Stanley, Multifractality in human heartbeat dynamics. Nature 399:461–465 (1999).

    Article  ADS  Google Scholar 

  15. J.-P. Kahane, Sur le chaos multiplicatif. Ann. Sci. Math. Quebec 9:105–150 (1985).

    MATH  MathSciNet  Google Scholar 

  16. J.-P. Kahane, Positive martingales and random measures. Chi. Ann. Math. 8B:1–12 (1987).

    Google Scholar 

  17. J.-P. Kahane, Produits de poids aléatoires indépendants et applications. In: J. Belair and S. Dubuc (eds.), Fractal Geometry and Analysis (Kluwer, Boston, 1991), p. 277.

  18. O. Khorunzhiy, Limit theorems for sums of products of random variables. Markov Process. Relat. Fields 9:675–686 (2003).

    MATH  MathSciNet  Google Scholar 

  19. B. B. Mandelbrot, Possible refinement of the log-normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: M. Rosenblatt and C. Van Atta (eds.), Statistical Models and Turbulence (Lecture Notes in Physics 12, Springer, New York, 1972), p. 333.

  20. B. B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C.R. Academ. Sci. Paris 278A:289–292 & 355–358 (1974a).

  21. B. B. Mandelbrot, Intermitent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62:331–358 (1974b).

    Article  MATH  ADS  Google Scholar 

  22. B. B. Mandelbrot, Limit lognormal multifractal measures. In: E. A. Gotsman et al. (eds.), Frontiers of Physics: Landau Memorial Conference (Pergamon, New York, 1990), p. 309.

  23. H. Matsumoto and M. Yor, On Dufresne’s relation between the probability laws of exponential functionals of Brownian motion with different drifts. Adv. Appl. Prob. 35:184–206 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Meneveau and K. R. Sreenivasan, The multifractal nature of the turbulent energy dissipation, J. Fluid Mech. 224:429–484 (1991).

    Google Scholar 

  25. C. Monthus and A. Comtet, On the flux distribution in a one dimensional disordered system. J. Phys. I France 4:635–653 (1994).

    Article  Google Scholar 

  26. J.-F. Muzy and E. Bacry, Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws. Phys. Rev. E 66:056121 (2002).

    Google Scholar 

  27. I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5:571–587 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Ostrovsky, Limit lognormal multifractal as an exponential functional. J. Stat. Phys. 116:1491–1520 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. D. Schertzer and S. Lovejoy, Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades. J. Geophys. Res. 92:9693–9721 (1987).

    Article  ADS  Google Scholar 

  30. D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya and D. Marsan Multifractal cascade dynamics and turbulent intermittency. Fractals 5:427–471 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Schmitt and D. Marsan, Stochastic equations generating continuous multiplicative cascades. Eur. J. Phys. B 20:3–6 (2001).

    ADS  Google Scholar 

  32. F. Schmitt, A causal multifractal stochastic equation and its statistical properties. Eur. J. Phys. B 34:85–98 (2003).

    Article  ADS  Google Scholar 

  33. F. Schmitt, D. Schertzer and S. Lovejoy, Multifractal analysis of foreign exchange data. Appl. Stochastic Models Data Anal. 15:29–53 (1999).

    Article  MATH  Google Scholar 

  34. A. Selberg, Remarks on a multiple integral. Norske Mat. Tidsskr. 26:71–78 (1944).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ostrovsky.

Additional information

The author wishes to express gratitude to the Mathematics Department of Lehigh University for generous support during his stay at Lehigh University, where this article was written.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovsky, D. Functional Feynman-Kac Equations for Limit Lognormal Multifractals. J Stat Phys 127, 935–965 (2007). https://doi.org/10.1007/s10955-007-9315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9315-z

Keywords

Navigation