Skip to main content
Log in

Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Transport through generalized trees is considered. Trees contain the simple nodes and supernodes, either well-structured regular subgraphs or those with many triangles. We observe a superdiffusion for the highly connected nodes while it is Brownian for the rest of the nodes. Transport within a supernode is affected by the finite size effects vanishing as N → ∞. For the even dimensions of space, d = 2, 4, 6,..., the finite size effects break down the perturbation theory at small scales and can be regularized by using the heat-kernel expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Monason, Eur. Phys. J. B 12:555 (1999).

    Article  ADS  Google Scholar 

  2. B. Kozma, M. B. Hastings and G. Korniss, Phys. Rev. Lett. 98(10):108701 (2004).

    Article  ADS  Google Scholar 

  3. M. B. Hastings, Eur. Phys. Jour. B 42:297 (2004).

    Article  ADS  Google Scholar 

  4. T. Aste, Random walk on disordered networks, oai:arXiv.org:cond-mat/9612062 (2006-06-17).

  5. Y. Limoge and J. L. Bocquet, Phys. Rev. Lett. 65:60 (1990).

    Article  ADS  Google Scholar 

  6. D. H. Zanette and P. A. Alemany, Phys. Rev. Lett. 75:366 (1995).

    Article  ADS  Google Scholar 

  7. M. U. Vera and D. J. Durian, Phys. Rev. E 53:3215 (1996).

    Article  ADS  Google Scholar 

  8. S. Boettcher and M. Moshe, Phys. Rev. Lett. 74:2410 (1995).

    Article  ADS  Google Scholar 

  9. C. M. Bender, S. Boettcher and P. N. Meisinger, Phys. Rev. Lett. 75:3210 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. D. Cassi and S. Regina, Phys. Rev. Lett. 76:2914 (1996).

    Article  ADS  Google Scholar 

  11. N. Goldenfeld, O. Martin, Y. Oono and F. Liu, Phys. Rev. Lett. 64(12):1361 (1990).

    Article  ADS  Google Scholar 

  12. J. Bricmont and A. Kupiainen, Comm. Math. Phys. 150:193 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. J. Bricmont, A. Kupiainen and G. Lin, Comm. Pure Appl. Math. 47:893 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Bricmont, A. Kupiainen and J. Xin, J. Diff. Eqs. 130:9 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  15. E. V. Teodorovich, Lourn. Eksp. Theor. Phys. (Sov. JETP) 115:1497 (1999).

    Google Scholar 

  16. N. V. Antonov and J. Honkonen, Phys. Rev. E 66:046105 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. Colin de Verdiére, Spectres de Graphes, Cours Spécialisés 4, Société Mathématique de France (1998).

  18. S. Y. Cheng, Eigenfunctions and nodal sets, Comm. Math. Helv. 51:43 (1976).

    Article  MATH  Google Scholar 

  19. G. Besson, Sur la multiplicité des valeurs propres du laplacien, Séminaire de théorie spectrale et géométrie (Grenoble) 5:107–132 (1986–1987).

  20. N. Nadirashvili, Multiple eigenvalues of Laplace operators, Math. USSR Sbornik 61:325–332 (1973).

    MathSciNet  Google Scholar 

  21. B. Sévennec, Multiplicité du spectre des surfaces: une approche topologique, Preprint ENS Lyon (1994).

  22. Y. Colin de Verdiére, Ann. Sc. ENS. 20:599–615 (1987).

    MATH  Google Scholar 

  23. I. J. Farkas, I. Derenyi, A.-L. Barabasi and T. Vicsek, Phys. Rev. E 64:026704:1–12 (2001).

    Google Scholar 

  24. Van Loan, J. Comput. Appl. Math. 123:85 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. N. Langville and W. J. Stewart, J. Comput. Appl. Math. 167:429 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. J.-P. Eckman and E. Moses, Curvature of co-links uncovers Hidden Thematic Layers in the World Wide Web, Proc. Nat. Acad. Sci. 99:5825 (2002).

    Article  ADS  Google Scholar 

  27. P. Collet and J.-P. Eckmann, The number of large graphs with a positive density of triangles, J. Stat. Phys. 109(5–6):923 (2002).

    Google Scholar 

  28. D. Sergi, Phys. Rev. E, 72:025103 (2005).

    Google Scholar 

  29. L. Kim, A. Kyrikou, M. Desbrun and G. Sukhatme, An implicit based haptic rendering technique, in Proc. IEEE/RSJ International Conference on Intelligent Robots (2002).

  30. K. Salisburym, D. Brock, T. Massie, N. Swarup and C. Zilles, Haptic rendering: Programming touch interaction with virtual objects, in Proc. 1995 Symposium on Interactive 3D Graphics, pp. 123–130 (1995).

  31. R. Schneider and L. Kobbelt, Computer Aided Geometric Design 4(18):159 (2001).

    MathSciNet  Google Scholar 

  32. B. M. Kim and J. Rossignac, Localized bi-Laplacian solver on a triangle mesh and its applications, GVU Technical Report Number: GIT-GVU-04-12, College of Computing, Georgia Tech. (2004).

  33. P. Buser, Math. Z. 162:87 (1978); Discrete Appl. Math. 9:105 (1984).

    Google Scholar 

  34. R. Brooks and E. Makover, Random construction of Riemann surfaces, arXiv:math.DG/0106251 (2001).

  35. D. Mangoubi, Riemann surfaces and 3-regular graphs, Research MS Thesis, (Technion-Israel Instute of Technology, Haifa January, 2001).

  36. B. L. Nelson and P. Panangaden, Phys. Rev. D 25(4):1019 (1982).

    Article  ADS  Google Scholar 

  37. B. S. De Witt, Phys. Rep. 19:295 (1975).

    Article  ADS  Google Scholar 

  38. B. S. Nelson and P. Panangaden, Phys. Rev. D 25:1019 (1982).

    Article  ADS  Google Scholar 

  39. D. J. Toms, Phys. Rev. D 26:2713 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  40. P. Gilkey, J. Diff. Geom. 10:601 (1975).

    MATH  MathSciNet  Google Scholar 

  41. B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon & Breach, New York. 1965).

  42. L. Parker and D. J. Toms, Phys. Rev. D31:953 (1985).

    ADS  MathSciNet  Google Scholar 

  43. L. Parker and D. J. Toms, Phys. Rev. D31:3424 (1985); L. Parker, in M. Levy and S. Deser (eds.), Recent Developments in Gravitation Cargese 1978 Lectures (Plenum Press, New York, 1979).

  44. D. J. Toms, Phys. Rev. D 27:1803 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  45. D. J. Toms, Phys. Lett. B 126:37 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  46. T. S. Bunch and L. Parker, Phys. Rev. D 20(10):2499 (1979).

    Article  ADS  Google Scholar 

  47. J. Balakrishnan, Phys. Rev. E 61:4648 (2000).

    Article  ADS  Google Scholar 

  48. L. Ts. Adzhemyan, N. V. Antonov and A. N. Vasiliev, The Field Theoretic Renormalization Group in Fully Developed Turbulence (Gordon and Breach Publ., 1999).

  49. D. Volchenkov and R. Lima, On the convergence of multiplicative branching processes in dynamics of fluid flows, arXiv:cond-mat/0606364 (2006).

  50. P. C. Martin, E. D. Siggia and H. A. Rose, Phys. Rev. A 8:423 (1973); H. K. Janssen, Z. Phys. B 23:377 (1976); R. Bausch, H. K. Janssen and H. Wagner, Z. Phys. B 24:113 (1976); C. De Dominicis, J. Phys. (Paris) 37, Colloq. C1, C1-247 (1976).

    Google Scholar 

  51. K. Symanzik, Nucl. Phys. B 190:1 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  52. D. Volchenkov, L. Volchenkova and Ph. Blanchard, Phys. Rev. E 66:046137 (2002).

    Article  ADS  Google Scholar 

  53. Ph. Blanchard and T. Krueger, J. Stat. Phys. 114:1399 (2004).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Volchenkov.

Additional information

PACS codes: 87.15.Vv, 89.75.Hc, 89.75.Fb

The Alexander von Humboldt Research Fellow at the BiBoS Research Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volchenkov, D., Blanchard, P. Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs. J Stat Phys 127, 677–697 (2007). https://doi.org/10.1007/s10955-007-9313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9313-1

Keywords

Navigation