Skip to main content
Log in

On the Solutions of Linear Odd-Order Heat-Type Equations with Random Initial Conditions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper odd-order heat-type equations with different random initial conditions are examined. In particular, we give rigorous conditions for the existence of the solutions in the case where the initial condition is represented by a strictly ϕ –subGaussian harmonizable process η = η (x). Also the case where η is represented by a stochastic integral with respect to a process with independent increment is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Beghin, K. Hochberg and E. Orsingher, Stoch. Process. Appl. 85:209–223 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Beghin, V. P. Knopova, N. N. Leonenko and E. Orsingher, J. Stat. Phys. 99(3/4):769–781 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Beghin and E. Orsingher, Stoch. Process. Appl. 115:1017–1040 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Beghin, E. Orsingher, and T. Ragozina, Stoch. Process. Appl. 94:71–93 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. V. V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes. Translations of Mathematical Monographs. 188 (AMS, American Mathematical Society, Providence, RI, 2000), 257 p.

  6. J. L. Doob, Trans. Am. Math. Soc. 42:107–140 (1937).

    Article  MATH  MathSciNet  Google Scholar 

  7. C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985).

    Google Scholar 

  8. R. Giuliano Antonini, Yu. V. Kozachenko, and T. Nikitina, Rendiconti Accademia Nazionale delle Scienze XL. Memorie di Matematica e Applicazioni 121. XXVII:95–124 (2003).

  9. K. J. Hochberg and E. Orsingher, Stoch. Proc. Appl. 52:273–292 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. A. Hunt, Trans. Am. Math. Soc. 71:38–69 (1951).

    Article  MATH  Google Scholar 

  11. J. K. Hunter and J. Scheurle, Physica D 32:253–268 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. T. Iizuka, Phys. Lett. A 181:39–42 (1993).

    Article  ADS  Google Scholar 

  13. T. Kakutani and H. Ono, J. Phys. Soc. Jpn. 26:1305–1318 (1969).

    Article  Google Scholar 

  14. T. Kawahara, J. Phys. Soc. Jpn. 33:260–264 (1972).

    Article  Google Scholar 

  15. V. P. Knopova, Random Oper. Stoch. Equ. 12(1):35–42 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. Yu. V. Kozachenko, Dokl. Akad. Nauk Ukr. SSR, Ser. A. 9:14–16 (1984).

    MathSciNet  Google Scholar 

  17. Yu. V. Kozachenko, Theory Probab. Math. Stat. 40:43–50 (1990).

    MATH  MathSciNet  Google Scholar 

  18. Yu. V. Kozachenko and E. I. Ostrovskij, Theory Probab. Math. Stat. 32:45–56 (1986).

    MATH  Google Scholar 

  19. Yu. V. Kozachenko and I. Rozora, Random Oper. Stoch. Equ. 3:275–296 (2003).

    Article  MathSciNet  Google Scholar 

  20. Yu. V. Kozachenko and G. I. Slivka, Theor. Probab. Math. Statist. 69:67–83 (2004).

    Article  MathSciNet  Google Scholar 

  21. A. Lachal, Electron. J. Prob. 8(20):1–53 (2003).

    MathSciNet  Google Scholar 

  22. A. Lachal, First hitting time and place, monopoles and multipoles for pseudo-processes driven by the equation \(\frac{\partial u}{\partial t}=\pm \frac{\partial ^{N}u}{\partial x^{N}}\), preprint (2006).

  23. M. J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1978).

    MATH  Google Scholar 

  24. M. Loève, Probability Theory. Foundations. Random sequences. (D. van. Nostrand Co., Inc. XV., New York, 1955) 515 p.

  25. T. Mikosch and R. Norvaiša, Bernoulli 6(3):401–434 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Nagashima, Phys. Lett. A 105:439–442 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Nagashima and M. Kuwahara, J. Phys. Soc. Jpn. 105:439–442 (1981).

    Google Scholar 

  28. R. Norvaiša and G. Samorodnitsky, Ann. Probab. 22(4):1904–1929 (1994).

    MathSciNet  Google Scholar 

  29. E. Orsingher, Lith. Math. J. 31:321–334 (1991).

    MathSciNet  Google Scholar 

  30. B. S. Rajput and J. Rosinski, Probab. Theory Rel. Fields 82:451–487 (1989).

    MATH  MathSciNet  Google Scholar 

  31. F. Tappert, Nonlinear Wave Motion, Lecture Notes in Applied Math. (AMS) vol. 15, pp. 215–216 (1974).

  32. M. Wadati, J. Phys. Soc. Jpn. 52:2642–2648 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  33. G. B. Whitham, Linear nad Nonlinear Waves. (John Wiley & Sons Inc., New York). Reprint of the 1974 original, A Wiley-Interscience Publ. (1999).

  34. K. Yoshimura and S. Watanabe, J. Phys. Soc. Jpn. 51:3028–3055 (1982).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Orsingher.

Additional information

Partially supported by the NATO grant PST.CLG.980408.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghin, L., Kozachenko, Y., Orsingher, E. et al. On the Solutions of Linear Odd-Order Heat-Type Equations with Random Initial Conditions. J Stat Phys 127, 721–739 (2007). https://doi.org/10.1007/s10955-007-9309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9309-x

Keywords

Navigation