Skip to main content
Log in

On the Zero Mass Limit of Tagged Particle Diffusion in the 1-d Rayleigh-Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the M→0 limit for tagged particle diffusion in a 1-dimensional Rayleigh-gas, studied originaly by Sinai and Soloveichik [Ya. G. Sinai, M. R. Soloveichik, Commun. Math. Phys. 104:423–443 (1986)], and by Szász and Tóth [D. Szász, B. Tóth, Commun. Math. Phys. 104:445–457 (1986)], respectively. In this limit we derive a new type of model for tagged particle diffusion, for which the two central particles, in addition to elastic collisions with the rest of the gas, interact with Calogero-Moser-Sutherland (i.e. inverse quadratic) potential. Computer simulations on this new model reproduce exactly the numerical value of the limiting variance obtained by Boldrighini, Frigio and Tognetti in [C. Boldrighini, S. Frigio, D. Tognetti, J. Stat. Phys. 108:703–712 (2002)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bálint, B. Tóth and P. Tóth, New upper bounds for the limiting variance of tagged particle diffusion in 1-d. In preparation.

  2. P. Billingsley, Convergence of Probability Measures. (Wiley, New York, 1968).

  3. C. Boldrighini, G. C. Cosimi and S. Frigio, Diffusion and Einstein relation for a massive particle in a one-dimensional free gas: numerical evidence. J. Stat. Phys. 59:1241–1250 (1990).

    Google Scholar 

  4. C. Boldrighini, S. Frigio and D. Tognetti, Numerical evidence for the low-mass behavior of the one-dimensional Rayleigh gas with local interaction. J. Stat. Phys. 108:703–712 (2002).

    Google Scholar 

  5. F. Calogero, Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potential. J. Math. Phys. 12:419–436 (1971).

    Google Scholar 

  6. D. Dürr, S. Goldstein and J. L. Lebowitz, A mechanical model of Brownian motion. Commun. Math. Phys. 78:507–530 (1981).

    Google Scholar 

  7. J. F. Fernandez and J. Marro, Diffusion in a one-dimensional gas of hard point particles. J. Stat. Phys. 71:225–233 (1993).

    Google Scholar 

  8. T. E. Harris, Diffusions with collisions between particles. J. Appl. Probability 2:323–338 (1965).

    Google Scholar 

  9. R. Holley, The motion of a heavy particle in an infinite one-dimensional gas of hard spheres. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17:181–219 (1971).

    Google Scholar 

  10. M. L. Khazin, Investigation of the diffusion of a massive particle in a one-dimensional ideal gas. Theoret. Math. Phys. 71:299–303 (1987).

    Google Scholar 

  11. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16:197–220 (1975).

    Google Scholar 

  12. E. Omerti, M. Ronchetti and D. Dürr, Numerical evidence for mass dependence in the diffusive behaviour of the “heavy particle” on the line. J. Stat. Phys. 44:339–346 (1986).

    Google Scholar 

  13. A. I. Neishtadt and Ya. G. Sinai, Adiabatic piston as a dynamical system. J. Stat. Phys. 116:815–820 (2004).

    Google Scholar 

  14. D. Ruelle and Ya. G. Sinai, From dynamical systems to statistical mechanics and back. Physica A140:1–8 (1986).

    Google Scholar 

  15. Ya. G. Sinai, Dynamics of a massive particle surrounded by a finite number of light particles. Theor. Math. Phys. 121:1351–1357 (1999).

  16. Ya. G. Sinai and M. R. Soloveichik, One-dimensional classical massive particle in the ideal gas. Commun. Math. Phys. 104:423–443 (1986).

  17. M. Soloveitchik, Mechanical background of Brownian motion. In: Sinai's Moscow Seminar on Dynamical Systems, vol. 171, L. A. Bunimovich, B. M. Gurevich, and Ya. B. Pesin (eds.) (AMS Translations, Series 2, 1996).

  18. M. Soloveitchik, Hydrodynamic scale for a driven tracer particle: rigorous results. Rendiconti di Matematica, Serie VII 22:1–146 (2002).

    Google Scholar 

  19. F. Spitzer, Uniform motion with elastic collisions of an infinite particle system. J. Math. Mech. 18:973–989 (1969).

    Google Scholar 

  20. B. Sutherland, Exact results for a quantum many body problem in one dimension, II. Phys. Rev. A5:1372–1376 (1972).

    Google Scholar 

  21. D. Szász and B. Tóth, Bounds on the limiting variance of the “heavy particle” in ℝ1. Commun. Math. Phys. 104:445–457 (1986).

    Google Scholar 

  22. D. Szász and B. Tóth, Towards a unified dynamical theory of the Brownian particle in an ideal gas. Commun. Math. Phys. 111:41–62 (1987).

    Google Scholar 

  23. D. Szász and B. Tóth, Dynamical theory of the Brownian particle in a Rayleigh-gas. J. Stat. Phys. 47:681–695 (1987).

    Google Scholar 

  24. P. Wright, A simple piston problem in one dimension. Nonlinearity 19:2365–2389 (2006).

    Google Scholar 

  25. Description of the numerical simulation and program code available online at http://www.renyi.hu/mogy/publications/szimulacio/brown1d

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Bálint.

Additional information

Dedicated to Domokos Szász on his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bálint, P., Tóth, B. & Tóth, P. On the Zero Mass Limit of Tagged Particle Diffusion in the 1-d Rayleigh-Gas. J Stat Phys 127, 657–675 (2007). https://doi.org/10.1007/s10955-007-9304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9304-2

Keywords

Navigation