Skip to main content
Log in

A New Mechanism for Collective Migration in Myxococcus xanthus

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Myxobacteria exhibit a complex life cycle characterized by a sequence of cell patterns that culminate in the formation of three-dimensional fruiting bodies. This paper provides indications that the specific cell shape of myxobacteria might play an important role in the different morphogenetic processes during the life cycle. We introduce a new mechanism for collective migration that can explain the formation of aligned cell clusters in myxobacteria. This mechanism does not depend on cell cooperation, and in particular it does not depend on diffusive signals guiding cell motion.

A Cellular Potts Model (CPM) that captures the rod cell shape, cell stiffness and active motion of myxobacteria is presented. By means of numerical simulations of model cell populations where cells interact via volume exclusion, we provide evidence of a purely mechanical mechanism for collective migration, which is controlled by the cells' length-to-width aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alber, M. Kiskowski and Y. Jiang, Lattice gas cellular automaton model for rippling and aggregation in myxobacteria. Physica D 191:343–358 (2004).

    Article  MATH  ADS  Google Scholar 

  2. U. Börner, A. Deutsch, H. Reichenbach and M. Bär, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Phys. Rev. Lett. 89:078101 (2002).

    Google Scholar 

  3. J. H. Bussemarker, A. Deutsch and E. Geigant, Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett. 78:5018–5021 (1997).

    Google Scholar 

  4. A. Deutsch and S. Dormann, Cellular automaton modeling of biological pattern formation - characterization, applications, and analysis. Birkhauser, Boston (2005).

  5. M. Dworkin and D. Kaiser, Myxobacteria II. American Society for Microbiology (1993).

  6. F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69:2013–2016 (1992).

    Article  ADS  Google Scholar 

  7. O. Igoshin, A. Mogilner, R. D. Welch, K. Dale and G. Oster, Pattern formation and traveling waves in myxobacteria: Theory and modeling. Proc. Natl. Acad. Sci. U.S.A. 98:14913–14918 (2001).

    Google Scholar 

  8. O. A. Igoshin, R. Welch, D. Kaiser and G. Oster, Waves and aggregation patterns in myxobacteria. Proc. Natl. Acad. Sci. U.S.A. 101:4256–4261 (2004).

    Google Scholar 

  9. L. Jelsbak and L. Søgaard-Andersen, Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 99:2032–2037 (2002).

    Google Scholar 

  10. D. Kaiser, Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1:45–54 (2003).

    Article  MathSciNet  Google Scholar 

  11. D. Kaiser and C. Crosby, Cell movement and its coordination in swarms of Myxococcus xanthus. Cell. Motil. Cytoskeleton 3:227–245 (1983).

    Google Scholar 

  12. D. Kaiser and R. Yu, Reversing cell polarity: Evidence and hypothesis. Curr. Opin. Microbiol. 8:216–221 (2005).

    Google Scholar 

  13. R. Merks, J. Glazier, S. Brodsky, M. Goligorksy and S. Newman, Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289:44–54 (2006).

    Google Scholar 

  14. A. Mogilner and L. Edelstein-Keshet, Spatio-angular order in populations of self-aligning objects: formation of oriented patches. Physica D 89:346–367 (1996).

    Google Scholar 

  15. H. Othmer and P. Schaap, Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments Theor. Biol. 5:175–282 (1998).

    Google Scholar 

  16. F. Peruani, A. Deutsch and M. Br, Non-equilibrium clustering of self-propelled rods. Phys. Rev. E 74:030904 (2006).

    Google Scholar 

  17. A. M. Rodriguez and A. M. Spormann, Genetic and molecular analysis of cglb, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181:4381–390 (1999).

    Google Scholar 

  18. L. Søgaard-Andersen, Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr. Opin. Microbiol. 7:587–593 (2004).

    Article  Google Scholar 

  19. W. Shi and D. R. Zusman, The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. U.S.A. 90:3378–3382 (1993).

    Google Scholar 

  20. A. M. Spormann and D. Kaiser, Gliding movements in Myxococcus xanthus. J. Bacteriol. 177:5846–5852 (1995).

    Google Scholar 

  21. A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria. SIAM J. Appl. Math. 61:172–182 (2000).

    Google Scholar 

  22. H. Sun, Z. Yang and W. Shi, Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. Proc. Nat. Acad. Sci. U.S.A. 96:15178–15783 (1999).

    Google Scholar 

  23. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75:1226–1229 (1995).

    Google Scholar 

  24. R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl. Acad. Sci. U.S.A. 98:14907–14912 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Starruß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starruß, J., Bley, T., Søgaard-Andersen, L. et al. A New Mechanism for Collective Migration in Myxococcus xanthus . J Stat Phys 128, 269–286 (2007). https://doi.org/10.1007/s10955-007-9298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9298-9

Keywords

Navigation