Skip to main content
Log in

A Stretched Exponential Bound on Time Correlations for Billiard Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct Markov approximations to the billiard flows and establish a stretched exponential bound on time-correlation functions for planar periodic Lorentz gases (also known as Sinai billiards). Precisely, we show that for any (generalized) Hölder continuous functions F,G on the phase space of the flow the time correlation function is bounded by const⋅ \(e^{-a\sqrt{|t|}}\), here t ∊ ℝ is the (continuous) time and a > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci. USA 57:1573–1576 (1967).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. V. Baladi and B. Vallée, Exponential decay of correlations for surface semi-flows without finite Markov partitions. Proc. Amer. Math. Soc. 133:865–874 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes Math., vol. 470 (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  4. R. Bowen, Markov partitions are not smooth. Proc. Amer. Math. Soc. 71:130–132 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  5. L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Markov partitions for two-dimensional billiards. Russ. Math. Surv. 45:105–152 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  6. L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46:47–106 (1991).

    Article  MathSciNet  Google Scholar 

  7. N. I. Chernov, G. L. Eyink, J. L. Lebowitz and Ya. G. Sinai, Steady-state electrical conduction in the periodic Lorentz gas. Comm. Math. Phys. 154:569–601 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. N. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems. Prob. Th. Rel. Fields 101:321–362 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Chernov, On statistical properties of chaotic dynamical systems. AMS transl., Ser. 2 171:57–71 (1995).

    MathSciNet  Google Scholar 

  10. N. Chernov, Markov approximations and decay of correlations for Anosov flows. Ann. Math. 147:269–324 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Chernov, Decay of correlations and dispersing billiards. J. Statist. Phys. 94:513–556 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. N. Chernov, Advanced statistical properties of dispersing billiards. J. Statist. Phys. 122:1061–1094 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. N. Chernov and R. Markarian, Chaotic billiards. Mathematical Suveys and Monographs, AMS (2006).

  14. N. Chernov and L.-S. Young, Decay of correlations of Lorentz gases and hard balls. In D. Szász, (Eds.), Hard Ball Systems and Lorentz Gas (Springer, Berlin, 2000), pp. 89–120.

    Google Scholar 

  15. N. Chernov and D. Dolgopyat, Brownian Brownian motion-I. Memoirs of AMS (to appear); available at http://www.math.uab.edu/chernov/ papers/pubs.html

  16. D. Dolgopyat, On decay of correlations in Anosov flows. Ann. Math. 147:357–390 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Dolgopyat, Prevalence of rapid mixing. (I) Ergod. Th. Dynam. Syst. 18:1097–1114 (1998); (II) Ergod. Th. Dynam. Syst. 20:1045–1059 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Gallavotti and D. S. Ornstein, Billiards and bernoulli schemes. Commun. Math. Phys. 38:83–101 (1974).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, 1995).

  20. A. Katok and J.-M. Strelcyn, Invariant Manifolds, Entropy and Billiards: Smooth Maps with Singularities, Lect. Notes Math., vol. 1222 (Springer-Verlag, 1986).

  21. I. Kubo and H. Murata, Perturbed billiard systems II, Bernoulli properties. Nagoya Math. J. 81:1–25 (1981).

    MATH  MathSciNet  Google Scholar 

  22. C. Liverani, Flows, Random Perturbations and Rate of Mixing. Ergodic Theory Dyn. Syst. 18:1421–1446 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Liverani, On contact Anosov flows. Ann. Math. 159:1275–1312 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  24. I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems. Comm. Math. Phys. 260:131–146 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. I. Melbourne, Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Amer. Math. Soc. (to appear)

  26. G. Nicolis, S. Martinez and E. Tirapegui, Finite coarse-graining and Chapman-Kolmogorov equation in conservative dynamical systems. Chaos, Solutions Fractals 1:25–37 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, Mass. 1978).

    MATH  Google Scholar 

  28. Ya. G. Sinai, Markov partitions and C-diffeomorphisms. Funct. Anal. Appl. 2:61–82 (1968).

    Article  MATH  Google Scholar 

  29. Ya. G. Sinai, Construction of Markov partitions. Funct. Anal. Appl. 2:245–253 (1968).

    Article  MATH  Google Scholar 

  30. Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surv. 25:137–189 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  31. Ya. G. Sinai, Gibbs measures in ergodic theory. Russ. Math. Surv. 27: 21–69 (1972).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. L. Stojanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows. Amer. J. Math. 123:715–759 (2001).

    Article  MathSciNet  Google Scholar 

  33. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147:585–650 (1998).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chernov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, N. A Stretched Exponential Bound on Time Correlations for Billiard Flows. J Stat Phys 127, 21–50 (2007). https://doi.org/10.1007/s10955-007-9293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9293-1

Keywords

Navigation