Skip to main content
Log in

An ODE Model of the Motion of Pelagic Fish

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A system of ordinary differential equations (ODEs) is derived from a discrete system of Vicsek, Czirók et al. [Phys. Rev. Lett. 75(6):1226–1229, 1995], describing the motion of a school of fish. Classes of linear and stationary solutions of the ODEs are found and their stability explored using equivariant bifurcation theory. The existence of periodic and toroidal solutions is also proven under deterministic perturbations and structurally stable heteroclinic connections are found. Applications of the model to the migration of the capelin, a pelagic fish that undertakes an extensive migration in the North Atlantic, are discussed and simulation of the ODEs presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. I. Aoki, A simulation study on the schooling mechanism in fish. Bull. Jap. Soc. Sci. Fish. 48:1081–1088 (1982).

    Google Scholar 

  2. 2. V. Arnold, Ordinary Differential Equations (MIT Press, Boston, 1973).

    MATH  Google Scholar 

  3. 3. P. Ashwin, and J. Swift, The dynamics of n weakly coupled identical oscillators. J. Nonlin. Sci. 2:69–108 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. 4. P. Babak, K. G. Magnússon, and S. Th. Sigurdsson, Dynamics of group formation in collective motion of organisms. Math. Med. Biol. 21:269–292 (2004).

    Article  MATH  Google Scholar 

  5. 5. A. Barbaro, B. Birnir, and K. Taylor, A comparison of simulations of discrete and ode models for the motion of pelagic fish. UCSB Preprint (2006).

  6. 6. B. Birnir, L. Bonilla, and J. Soler, Complex fish schools. UCSB Preprint (2006)

  7. 7. B. Birnir, B. Einarsson, and S. Sigurdsson, Simulations and stability of complex fish schools. RH Preprint (2006).

  8. 8. L. L. Bonilla, J. C. Neu, and R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Stat. Phys. 67:313–330 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. 9. E. Brown, P. Holmes, and J. Moehlis. Globally coupled oscillator networks. In E. Kaplan, J. E. Marsden, and K. R. Sreenivasan (eds.), Perspective and Problems in Nonlinear Science, A celebratory Volume in Honor of Lawrence Sirovich, pp. 183–215 (2003)

  10. 10. J. K. Couzin, I. D. R. James, G. D. Ruxton, and N. R. Franks, Collective memory and spatial sorting in animal groups. J. theor. Biol. 218:1–11 (2002)

    Article  MathSciNet  Google Scholar 

  11. 11. J. Crawford, Scaling and singularities in the entrainment of globally coupled oscillators. Phys. Rev. Lett. 74:4341–4344 (1995).

    Article  ADS  Google Scholar 

  12. 12. J. Crawford, and K. Davis, Synchronization for globally coupled phase oscillators: singularities and scalings for general couplings. Physica D 125(1–2):1–46 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. 13. A. Czirók, H. E. Stanley, and T. Vicsek, Spontaneously ordered motion of self-propelled particles. J. Phys. A: Math. Gen. 30:1375–1385 (1997)

    Article  ADS  Google Scholar 

  14. 14. A. Czirók, M. Vicsek, and T. Vicsek Collective motion of organisms in three dimensions. Physica A 264:299–304 (1999)

    Article  Google Scholar 

  15. 15. A. Czirók, and T. Vicsek, Collective behavior of interacting self-propelled particles. Physica A 281:17–29 (2000)

    Article  ADS  Google Scholar 

  16. 16. A. Czirók, and T. Vicsek, Collective Motion in Fluctuations and Scaling in Biology,in T. Vicsek (ed.), chapter 6, pp. 177–209 ( Oxford University Press, Oxford, UK, 2001).

    Google Scholar 

  17. 17. M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. Chayes. Self-propelled particles with soft-core interactions: patterns, stability and collapse. Phys. Rev. Lett. 96:104302 (2006)

    Article  ADS  Google Scholar 

  18. 18. M. Golubitsky, I. Stewart, and D. Schaeffer. Singularities and Groups in Bifurcation Theory, Vol. 2 (Springer, New York, 1988).

    Google Scholar 

  19. 19. F. H. Heppner, Three-dimensional structure and dynamics of bird flocks. In J. K. Parrish, and W. E. Pamner (eds.), Animal Groups in Three Dimensions (Cambridge University Press, 1997).

  20. 20. S. Hubbard, S. Sigurdsson P. Babak, and K. Magnússon, A model of the formation of fish schools and migrations of fish. Ecol. Model. 174:359–374 (2004).

    Article  Google Scholar 

  21. 21. A. Huth, and C. Wissel, The simulation of the movement of fish schools. J. Theor. Biol. 156:3565–385 (1992).

    Article  Google Scholar 

  22. 22. Y. Kuramoto, Self-entrainment of a population of coupled nonlinear oscillators. In H. Araki (ed.), Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39, pp. 420–422 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  23. 23. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, New York, 1984).

    MATH  Google Scholar 

  24. 24. K. G. Magnússon, S. Sigurdsson, P. Babak, S. F. Gudmundsson and E. H. Dereksdóttir, A continous density kolmogorov type model for a migrating fish stock. Discr. Cont. Dyn. Sys. B 4(3):695–704 (2004)

    Article  MATH  Google Scholar 

  25. 25. K. G. Magnússon, S. Sigurdsson, and E. H. Dereksdóttir, A simulation model for the capelin migrations in the north atlantic. Nonlinear Anal.: Real World Appl. 6:747–771 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  26. 26. K. G. Magnússon, S. Th. Sigurdsson, and B. Einarsson, A discrete and stochastic simulation model for migration of fish with application to capelin in the seas around iceland. Technical Report RH-20-04, Science Institute, University of Iceland (2004).

  27. 27. K. Okuda, Variety and generality of clustering in globally coupled oscillators. Physica D 63:424–436 (1993).

    Article  MATH  ADS  Google Scholar 

  28. 28. B. L. Partridge, The structure and function of fish schools. Sci. Am. 245:90–99 (1982)

    Google Scholar 

  29. 29. B. L. Partridge, and T. J. Pitcher, The sensory basis of fish schools: relative role of lateral lines and vision. J. Compar. Physiol. 135:315–325 (1980).

    Article  Google Scholar 

  30. 30. C. W. Reynolds, Flocks, herds and schools: a distributive behavioral model. Comput. Graph. 21:24–34 (1987).

    Google Scholar 

  31. 31. P. Smereka, Synchronization and relaxation for a class of globally coupled hamiltonian systems. Physica D 124:104–125 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. 32. S. Strogatz, From kuromoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D 143:1–20 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. 33. J. Toner, and Y. Tu, Long range order in a two-dimensional xy model: how birds fly together. Phys. Rev. Lett. 73:1375–1385 (1995).

    Google Scholar 

  34. 34. J. Toner, and Y. Tu, Flocks, herds and school: a quantative theory of flocking. Phys. Rev. E 58:4828 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  35. 35. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6):1226–1229 (1995)

    Article  ADS  Google Scholar 

  36. 36. T. Vicsek, A. Czirók, I. J. Farkas, and D. Helbing, Application of statistical mechanics to collective motion in biology. Physica A 274:182–189 (1999)

    Article  ADS  Google Scholar 

  37. 37. H. Vilhjálmsson, The icelandic capelin stock. J. Marine Res. Inst. Reykjavík XIII(2):281 (1994)

    Google Scholar 

  38. 38. H. Vilhjálmsson, Capelin (mallotus villosus) in the Iceland-East Greenland-Jan Mayen ecosystem. ICES J. Mar. Sci. 59:870–883 (2002). Available online at http://www.idealibrary.com, doi:10.1006/jms.2002.1233.

  39. 39. H. Vilhjálmsson, and J. E. Carscadden, Assessment surveys for capelin in the Iceland-East Greenland-Jan Mayen area, 1978–2001. ICES Journal of Marine Science 59:1096–1104, (2002). Available online at http://www.idealibrary.com, doi:10.1006/jms.2002.1232.

    Article  Google Scholar 

  40. 40. S. Watanabe, and S. Strogatz, Constant of the motion for superconducting josephson arrays. Physica D 74:195–253 (1994).

    Article  ADS  Google Scholar 

  41. 41. S. Watanabe, and J. Swift, Stability of periodic solutions in series arrays of josephson junctions with internal capacitance. J. Nonl. Sci. 7:503–536 (1997).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Birnir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnir, B. An ODE Model of the Motion of Pelagic Fish. J Stat Phys 128, 535–568 (2007). https://doi.org/10.1007/s10955-007-9292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9292-2

Keywords

Navigation