Skip to main content
Log in

Hydrodynamics of the Zero-Range Process in the Condensation Regime

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We argue that the coarse-grained dynamics of the zero-range process in the condensation regime can be described by an extension of the standard hydrodynamic equation obtained from Eulerian scaling even though the system is not locally stationary. Our result is supported by Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Spitzer, Interaction of Markov Processes. Adv. Math. 5:246–290 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. D. Andjel, Invariant measures for the zero range process. Ann. Probab. 10:525 (1982).

    MATH  MathSciNet  Google Scholar 

  3. F. Rezakhanlou, Hydrodynamic limit for attractive particle systems on ℤd. Comm. Math. Phys. 140:417–448 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. C. Kipnis and C. Landim, Scaling limits of interacting particle systems (Springer, Berlin, 1999).

    MATH  Google Scholar 

  5. M. R. Evans and T. Hanney, Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38:R195–R240 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. O. J. O'Loan, M. R. Evans and M. E. Cates, Jamming transition in a homogeneous one-dimensional system: The bus route model. Phys. Rev. E 58:1404–1418 (1998).

    Article  ADS  Google Scholar 

  7. I. Jeon and P. March, Condensation transition for zero-range invariant measures. Can. Math. Soc. Conf. Proc. 26:233–244 (2000).

    MathSciNet  Google Scholar 

  8. I. Jeon and P. March, Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28:1162–1194 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Grosskinsky, G. M. Schütz and H. Spohn, Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113:389–410 (2003).

    Article  MATH  Google Scholar 

  10. C. Godrèche, Dynamics of condensation in zero-range processes. J. Phys. A: Math. Gen. 36:6313–6328 (2003).

    Article  MATH  Google Scholar 

  11. J. Kaupužs, R. Mahnke and R. J. Harris, Zero-range model of traffic flow. Phys. Rev. E 72:056125 (2005).

    Article  ADS  Google Scholar 

  12. T. Antal and G. M. Schütz, Asymmetric exclusion process with next-nearest-neighbor interaction: Some comments on traffic flow and a nonequilibrium reentrance transition. Phys. Rev. E 62:83–93 (2000).

    Article  ADS  Google Scholar 

  13. Y. Kafri, E. Levine, D. Mukamel, G. M. Schütz and J. Török, Criterion for phase separation in one-dimensional driven systems. Phys. Rev. Lett. 89:035702 (2002)

    Article  ADS  Google Scholar 

  14. B. Tóth and B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws. J. Stat. Phys. 112:497–521 (2003).

    Article  MATH  Google Scholar 

  15. G. M. Schütz, Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles. J. Phys. A.: Math. Gen 36:R339–R379 (2003).

    Article  MATH  Google Scholar 

  16. G. M. Schütz, The Heisenberg chain as a dynamical model for protein synthesis—Some theoretical and experimental results. Int. J. Mod. Phys. B 11:197–202 (1997).

    Article  ADS  Google Scholar 

  17. K. Nishinari, Y. Okada, A. Schadschneider and D. Chowdhury, Intracellular transport of single-headed molecular motors KIF1A. Phys. Rev. Lett. 95:118101 (2005).

    Article  ADS  Google Scholar 

  18. A. Lipowski and M. Droz, Urn model of separation of sand. Phys. Rev. E 65:031307 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  19. G. M. Shim, B. Y. Park, J. D. Noh and H. Lee, Analytic study of the three-urn model for separation of sand. Phys. Rev. E 70:031305 (2004).

    Article  ADS  Google Scholar 

  20. G. M. Schütz, R. Ramaswamy and M. Barma, Pairwise balance and invariant measures for generalized exclusion processes. J. Phys. A: Math. Gen. 29:837–843 (1996).

    Article  MATH  ADS  Google Scholar 

  21. H. Spohn, Large Scale dynamics of interacting particle systems (Springer, Berlin, 1991).

    Google Scholar 

  22. G. M. Schütz, Exactly solvable models for many-body systems far from equilibrium. In Phase Transitions and Critical Phenomena vol 19, C. Domb and J. Lebowitz (eds.) (London: Academic, 2001), pp. 1–251.

    Google Scholar 

  23. M. J. Lighthill and G. B. Whitham, On Kinematic Waves II: A Theory of Traffic Flow on Long Crowded Roads. Proc. R. Soc. London Series A 229:317–345 (1955).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. A. De Masi and P. Ferrari, A remark on the hydrodynamics of the zero-range processes. J. Stat. Phys. 36:81–87 (1984).

    Article  MATH  ADS  Google Scholar 

  25. G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72: 277–296 (1993).

    Article  MATH  ADS  Google Scholar 

  26. B. Derrida, V. Hakim, M. R. Evans and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen. 26:1493–1517 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky and J. P. Straley, Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A: Math. Gen. 31: 6911–6919 (1998).

    Article  MATH  ADS  Google Scholar 

  28. S. Grosskinsky and H. Spohn, Stationary measures and hydrodynamics of zero range processes with several species of particles. Bull. Braz. Math. Soc. New Series 34:489–507 (2003).

    MATH  MathSciNet  Google Scholar 

  29. C. Bahadoran, Hydrodynamics of asymmetric particle systems with open boundaries, Oberwolfach Report 43/2004, 2290–2292.

    Google Scholar 

  30. E. Levine, D. Mukamel and G. M. Schütz, Zero-range process with open boundaries. J. Stat. Phys. 120:759–778 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. C. Godrèche and J. M. Luck, Dynamics of the condensate in zero-range processes. J. Phys. A: Math. Gen. 38: 7215–7237 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Schütz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütz, G.M., Harris, R.J. Hydrodynamics of the Zero-Range Process in the Condensation Regime. J Stat Phys 127, 419–430 (2007). https://doi.org/10.1007/s10955-007-9280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9280-6

Keywords

Navigation