Skip to main content
Log in

Spanning Trees on the Sierpinski Gasket

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present the numbers of spanning trees on the Sierpinski gasket SG d (n) at stage n with dimension d equal to two, three and four. The general expression for the number of spanning trees on SG d (n) with arbitrary d is conjectured. The numbers of spanning trees on the generalized Sierpinski gasket SG d,b (n) with d = 2 and b = 3,4 are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72:497–508 (1847).

    ADS  Google Scholar 

  2. N. L. Biggs, Algebraic Graph Theory, 2nd edn. (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  3. D. J. A. Welsh, Complexity: Knots, Colourings, and Counting (London Math. Soc. Lecture Notes series 186). (Cambridge University Press, Cambridge, 1993).

  4. R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21:1329–1371 (1993).

    MATH  MathSciNet  Google Scholar 

  5. R. Lyons, Asymptotic enumeration of spanning trees, Combin. Probab. Comput. 14:491–522 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. N. V. Temperley, in: Combinatorics: Proc. Combinatorial Mathematics, D. J. A. Welsh and D. R. Woodall, editors. (The Institute of Mathematics and its Applications, Oxford, 1972, pp. 356–357).

  7. F.-Y. Wu, Number of spanning trees on a lattice, J. Phys. A: Math. Gen. 10:L113–L115 (1977).

    Article  ADS  Google Scholar 

  8. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models. Physica 57:536–564 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  9. F.-Y. Wu, The Potts model, Rev. Mod. Phys. 54:235–268 (1982).

    Article  ADS  Google Scholar 

  10. D. Dhar, Theoretical studies of self-organized criticality. Physica A 369:29–70 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Y. Wu and K.-M. Chao, Spanning Trees and Optimization Problems (Chapman & Hall/CRC, Boca Raton, 2004).

    MATH  Google Scholar 

  12. H. N. V. Temperley, Combinatorics (London Math. Soc. Lecture Note Series #13), T. P. McDonough and V. C. Mavron, editors. (Cambridge University Press, Cambridge, 1974, pp. 202–204).

  13. W.-J. Tzeng and F.-Y. Wu, Spanning trees on hypercubic lattices and nonorientable surfaces. Appl. Math. Lett. 13:19–25 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Shrock and F.-Y. Wu, Spanning trees on graphs and lattices in d dimensions. J. Phys. A: Math. Gen. 33:3881–3902 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. S.-C. Chang and R. Shrock, Some exact results for spanning trees on lattices. J. Phys. A: Math. Gen. 39:5653–5658 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. S.-C. Chang and W. Wang, Spanning trees on lattices and integral identities. J. Phys. A: Math. Gen. 39:10263–10275 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  18. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. (Wiley, Chichester, 2003).

    Book  MATH  Google Scholar 

  19. Y. Gefen, B. B. Mandelbrot and A. Aharony, Critical phenomena on fractal lattices. Phys. Rev. Lett. 45:855–858 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Gefen and A. Aharony, Solvable fractal family, and its possible relation to the backbone at percolation. Phys. Rev. Lett. 47:1771–1774 (1981).

    Google Scholar 

  21. R. Rammal and G. Toulouse, Spectrum of the Schrödinger equation on a self-similar structure. Phys. Rev. Lett. 49:1194–1197 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Alexander, Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B 27:1541–1557 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Domany, S. Alexander, D. Bensimon and L. P. Kadanoff, Solutions to the Schrödinger equation on some fractal lattices. Phys. Rev. B 28:3110–3123 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals: I. Quasi-linear lattices. J. Phys. A: Math. Gen. 16:1267–1278 (1983); Y. Gefen, A. Aharony, Y. Shapir and B. B. Mandelbrot, Phase transitions on fractals: II. Sierpinski gaskets, ibid. 17:435–444 (1984); Y. Gefen, A. Aharony, and B. B. Mandelbrot, Phase transitions on fractals: III. Infinitely ramified lattices, ibid. 17:1277–1289 (1984).

  25. R. A. Guyer, Diffusion on the Sierpinski gaskets: A random walker on a fractally structured object. Phys. Rev. A 29:2751–2755 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Hattori, T. Hattori and S. Kusuoka, Self-avoiding paths on the pre-Sierpinski gasket. Probab. Theory Relat. Fields 84:1–26 (1990); T. Hattori and S. Kusuoka, The exponent for the mean square displacement of self-avoiding random walk on the Sierpinski gasket, ibid. 93:273–284 (1992).

    Google Scholar 

  27. D. Dhar and A. Dhar, Distribution of sizes of erased loops for loop-erased random walks. Phys. Rev. E 55:R2093–R2096 (1997).

    Article  ADS  Google Scholar 

  28. F. Daerden and C. Vanderzande, Sandpiles on a Sierpinski gasket. Physica A 256:533–546 (1998).

    Article  Google Scholar 

  29. D. Dhar, Branched polymers on the Given-Mandelbrot family of fractals. Phys. Rev. E 71:031801 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  30. F. Harary, Graph Theory (Addison-Wesley, New York, 1969).

    Google Scholar 

  31. B. McKay, Spanning trees in regular graphs. Eur. J. Combin. 4:149–160 (1983).

    MATH  MathSciNet  Google Scholar 

  32. F. Chung and S.-T. Yau, Coverings, heat kernels and spanning trees. J. Combin. 6:163–183 (1999).

    MathSciNet  Google Scholar 

  33. R. Hilfer and A. Blumen, Renormalisation on Sierpinski-type fractals. J. Phys. A: Math. Gen. 17:L537–L545 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  34. J. L. Felker and R. Lyons, High-precision entropy values for spanning trees in lattices. J. Phys. A: Math. Gen. 36:8361–8365 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chiuan Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SC., Chen, LC. & Yang, WS. Spanning Trees on the Sierpinski Gasket. J Stat Phys 126, 649–667 (2007). https://doi.org/10.1007/s10955-006-9262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9262-0

Keywords

Navigation